[スポンサーリンク]

化学者のつぶやき

パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への展開

[スポンサーリンク]

2016年、イリノイ大学シカゴ校・Vladimir Gevorgyanらは、Pd(0)触媒の共存下、可視光照射下にヨウ化アリールからアリールパラジウムラジカル種が生成することを見いだした。これが促進する1,5-HAT過程を起点とし、シリルエーテルの脱水素反応が触媒的に進行することでシリルエノールエーテルが合成可能であることを明らかにした。

“Photoinduced Formation of Hybrid Aryl Pd-Radical Species Capable of 1,5-HAT: Selective Catalytic Oxidation of Silyl Ethers into Silyl Enol Ethers”
Parasram, M.; Chuentragool, P.; Sarkar, D.; Gevorgyan, V.* J. Am. Chem. Soc. 2016, 138, 6340. DOI: 10.1021/jacs.6b01628

問題設定

アリールハライドはクロスカップリング反応において重要なビルディングブロックであり、これまでにパラジウム触媒系を用いることで多様な機能性材料が合成されている。クロスカップリング反応においては、酸化的付加によって生じるPd(II)が反応に関与する。一方で、アリールパラジウムラジカル種を生成させることができれば、パラジウム化学とラジカル化学の両方の性質を活かした新奇反応性を開拓できると考えられる(冒頭図参照)。

技術や手法の肝

かねてよりGevorgyanらはシリルテザー型配向基を用いるフェノール基質の位置選択的なC-H活性化反応について精力的に研究している[1]。この技術基盤をもとに、アリールパラジウムラジカル種が進行させる水素原子移動(HAT)過程が、アルコール基質のC(sp3)-H活性化に活用可能とする仮説に基づいた研究を展開した。具体的には、Curranらが報告している1,5-HAT型アルコール遠隔位C-H官能基化反応[2] を参考に、反応系を設計した。

今回の研究では、生じた炭素ラジカルがアリールパラジウム(I)種によって捕捉され、続くβヒドリド脱離による不飽和化が進行することで、シリルエノールエーテルの合成へと繋げている。

主張の有効性検証

①反応条件の最適化

図の様な基質を用い、汎用パラジウム錯体を用いて脱水素反応の検討を行っている。熱的条件下では全く反応が進行しなかったが、青色LED光照射下を行ったところ、反応は進行した。配位子の検討を行った結果、dppf類似のリガンドLが最適であることを見出した。

②基質一般性の検討

環状、鎖状いずれでも進行する。官能基を有する場合でも中程度~良好な収率で進行。鎖状生成物の幾何異性体は本条件では制御不可能。天然物のような複雑骨格に対しても適用可能。

③反応機構解析

下記の触媒サイクルにおいてGevorgyanらは

  1. 酸化的付加で生じる4を、当量反応で確認できなかった(立体障害のため?)
  2. 重水素標識によってエーテルα位水素がベンゼン環に移動していることを確認

ことを根拠に、CMD機構(Path B)ではなく、ラジカル機構(Path A)で進行していると主張している。不飽和化のメカニズム(A1-A3の複数考えうる)に関する結論は未だ出ていない。

冒頭論文より引用

議論すべき点

  • これまでGevorgyanが自ら培ってきたシリルテザー化学をしっかり活かして展開している。生じた炭素ラジカルが上手くトランスメタル化すれば、更に広がっていくだろう。
  • 実際、クロスカップリング系の酸化的付加を加速させる目的に、青色LED光が使われだしている[3]。
  • ケイ素の置換基はiPrだと良くない。Meでも反応は進行するが、精製の際に分解するようである。

次に読むべき論文は?

  • 外部光触媒を必要とせず、遷移金属触媒(Co, Fe, Cu, Pd, Pt, Au)そのものが可視光吸収して反応を促進する系の総説[4]
  • この続報としてGevorgyanは、脂肪族アルコール[5]・アルケン[6]遠隔位の官能基化を達成している。

参考文献

  1. Parasram, M.; Gevorgyan, V. Acc. Chem. Res. 2017, 50, 2038. DOI: 10.1021/acs.accounts.7b00306
  2. Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W.  J. Am. Chem. Soc. 1988, 110, 5900. DOI: 10.1021/ja00225a052
  3. (a) Wang, G.-Z.; Shang, R.;  Cheng, W.-M.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 18307. DOI: 10.1021/jacs.7b10009 (b) Wang, G.-Z.; Shang, R.; Fu, Y. Synthesis 2018, 50, 2908. DOI: 10.1055/s-0036-1592000 (c) Wang, G.-Z.; Shang, E.; Fu, Y. Org. Lett. 2018, 20, 888. DOI: 10.1021/acs.orglett.8b00023 (d) Kurandina, D.; Rivas, M.; Radzhabov, M.; Gevorgyan, V. Org. Lett. 2018, 20, 357. DOI: 10.1021/acs.orglett.7b03591 (e) Abdiaj,I.; Huck, L.; Mateo, J. M.; de la Hoz, A.; Gomez , V.; Díaz‐Ortiz, A.; Alcázar, J. Angew. Chem. Int. Ed. 2018, 57, 13231. doi:10.1002/anie.201808654
  4. Parasram, M.; Gevorgyan, V.  Chem. Soc. Rev. 2017, 46, 6227. doi:10.1039/C7CS00226B
  5. Parasram, M.; Chuentragool, P.; Wang, Y.; Shi, Y.; Gevorgyan, V. J. Am. Chem. Soc. 2017, 139, 14857. DOI: 10.1021/jacs.7b08459
  6. Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem. Int. Ed. 2018, 57, 2712. doi:10.1002/anie.201712775
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 小説『ラブ・ケミストリー』聖地巡礼してきた
  2. BulkyなNHCでNovelなButadiyne (BNNB)…
  3. 材料開発の変革をリードするスタートアップのプロダクト開発ポジショ…
  4. 研究者の成長を予測できる?:JDream Expert Find…
  5. 分子間相互作用の協同効果を利用した低対称分子集合体の創出
  6. やっぱりリンが好き
  7. マンチニールの不思議な話 ~ウィリアム・ダンピアの記録から~
  8. プレプリントサーバについて話そう:Emilie Marcusの翻…

注目情報

ピックアップ記事

  1. 光速の文献管理ソフト「Paperpile」
  2. 新たな青色発光素子 京大化学研教授ら発見
  3. 【書籍】機器分析ハンドブック1 有機・分光分析編
  4. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  5. キラルな八員環合成におすすめのアイロン
  6. 渡辺化学工業ってどんな会社?
  7. コーリー・ニコラウ マクロラクトン化 Corey-Nicolaou Macrolactonizaion
  8. ロバート・フィップス Robert J. Phipps
  9. トーマス・レクタ Thomas Lectka
  10. 2015年ケムステ人気記事ランキング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

サステナブル社会の実現に貢献する新製品開発

味の素ファインテクノ社が開発し、これから事業に発展して、社会に大きく貢献する製品…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP