[スポンサーリンク]

化学者のつぶやき

“CN7-“アニオン

CN7anion_1.gif

The CN7 anion
Klaptoke, T. M.; Stierstorfer, J. J. Am. Chem. Soc. 2009, 131, 1122. DOI: 10.1021/ja8077522

独・Ludwig-Maximilian University of MunichのKlaptokeらによる報告です。

今回見いだされた化合物は、論文のタイトルにもなっている”CN7 アニオン“、すなわち5-アジド-1H-テトラゾールアニオンです。一見しての通り、小さな分子ながら窒素を多量に含みます。こういった窒素豊富化合物は、一般に高エネルギー化合物(high energy compound)となり、燃料・爆薬としての応用が期待されます。


彼らはカウンターカチオンを様々なものに変えたCN7塩化合物を調製しています。例えばヒドラジニウム(冒頭図)、アンモニウム、グアニジウム、リチウム、ナトリウム、カルシウムなどなど・・・

合成した化合物のうち幾つかは単結晶を取って3次元構造を構造決定しています。他の分析法(質量分析、多核NMR、IR、ラマン分光などなど)は試せる限り使ったということですが、多くのCN7金属塩は乾固した瞬間に即座に分解(=爆発)してしまうという話だそうで・・・((((;゚Д゚))))ガクガクブルブル!

どうやらX線構造の解析から、イオン間の相互作用・水素結合の強さが化合物の安定化に効いているらしいです。乾いた化合物やイオン相互作用の弱いセシウム塩、ルビジウム塩、カリウム塩が超敏感なのはそういう理由では無いか、と考察されています。

しかしあまりにも敏感すぎる化合物らしく、実用には堪えなさそうだというコメントはなされていました。

以下余談になりますが、この種の高エネルギー化合物の中では、トリニトロトルエン(TNT)は最もポピュラーでしょう。TNT火薬などの名称で通じ、『TNT何kg分の破壊力』などと爆発エネルギーの目安として使われるのもご存じの通りです。

TNT.gif

一方で、考え得る爆薬のなかで理論上最強とされているのは、オクタニトロキュバン(ONC)。不安定なN-O結合を沢山持つうえに、高度にひずみのかかったとんでもない高エネルギー化合物です。シカゴ大学のEatonらによって1999年に合成されています。これは既報の合成法があまりに煩雑なため、実用には至っていませんが、実際に携わった研究者がいかにおそるおそる取り組んでいたか・・・想像に難くありませんよね。

cubane.gif

ちなみに、現在実用されている爆薬で最も強力なものは、ヘキサニトロヘキサアザイソウルチタン(HNIW)という化合物。これは理論計算から合理的に設計された化合物ということで、複雑に見えて合成法もなかなかカンタンな模様です(でもくれぐれも、自分で作ったりしないでください(笑))。

HNIW.gif

こういった高エネルギー化合物の研究は、軍事がらみの歴史も綿綿とあり、なかなかに興味深い世界とも思えます。またいずれ、まとめ記事を書いてみたいと思います。

  • 関連文献
[1] (a) Stierstorfer, J.; Klapo  tke, T. M.; Hammerl, A.; Chapman, R. D. Z. Anorg. Allg. Chemie 2008, 634, 1051. (b) Hammerl, A.; Klapotke, T. M.; Mayer, P.; Weigand, J. J. Propellants, Explos. Pyrotech. 2005, 30, 17. (c) Hammerl, A.; Klapotke, T. M.; Noth, H.; Warchhold, M.; Holl, G. Propellants, Explos., Pyrotech. 2003, 28, 165. (d) Hammerl, A.; Klapoke, T. M. Inorg. Chem. 2002, 41, 906.

  • 関連書籍
火薬と爆薬の化学
東海大学出版会
Tenney Lombard Davis(原著)姉川 愼一(翻訳)細谷 文夫(翻訳)
発売日:2006-03
火薬工学
森北出版
発売日:2001-07
おすすめ度:4.0
おすすめ度4 火薬の知識
エネルギー物質の科学―基礎と応用
朝倉書店
John A. Conkling(原著)
発売日:1996-09
おすすめ度:4.0
おすすめ度4 エネルギー物質の化学?
エネルギー物質ハンドブック
共立出版
火薬学会(編集)
発売日:1999-02
おすすめ度:5.0
おすすめ度5 火薬を取り扱う者は読むこと
  • 関連リンク

窒素はどこまでつながれる? (有機化学美術館)

炭素と窒素のコンビネーション (有機化学美術館)

アジドの話 (1)  (2) (有機化学美術館)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 斬新な官能基変換を可能にするパラジウム触媒
  2. Dead Endを回避せよ!「全合成・極限からの一手」⑨ (解答…
  3. 合成とノーベル化学賞
  4. 100年前のノーベル化学賞ーリヒャルト・ヴィルシュテッター
  5. Dead Endを回避せよ!「全合成・極限からの一手」⑥(解答編…
  6. 不斉アリル位アルキル化反応を利用した有機合成
  7. ICMSE International Conference o…
  8. 化学素人の化学読本

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 酸化グラフェンに放射性物質を除去する機能が報告される
  2. 岡本佳男 Yoshio Okamoto
  3. ダイセル化学、筑波研をアステラス製薬に売却
  4. Modern Method of Organic Synthesis
  5. 有機化学クロスワードパズル
  6. 第二回触媒科学国際シンポジウム
  7. 「関口存男」 ~語学の神様と言われた男~
  8. 投票!2016年ノーベル化学賞は誰の手に??
  9. アレクサンダー・リッチ Alexander Rich
  10. フラーレンの単官能基化

関連商品

注目情報

注目情報

最新記事

アルデヒドのC-Hクロスカップリングによるケトン合成

プリンストン大学・David W. C. MacMillanらは、可視光レドックス触媒、ニッケル触媒…

“かぼちゃ分子”内で分子内Diels–Alder反応

環状水溶性ホスト分子であるククルビットウリルを用いて生体内酵素Diels–Alderaseの活性を模…

トーマス・レクタ Thomas Lectka

トーマス・レクタ (Thomas Lectka、19xx年xx月x日(デトロイト生)-)は、米国の有…

有機合成化学協会誌2017年12月号:四ヨウ化チタン・高機能金属ナノクラスター・ジシリルベンゼン・超分子タンパク質・マンノペプチマイシンアグリコン

2017年も残すところあとわずかですね。みなさまにとって2017年はどのような年でしたでしょうか。…

イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化反応

オハイオ州立大学・David A. Nagibらは、脂肪族アルコールのラジカル関与型β位選択的C(s…

翻訳アルゴリズムで化学反応を予測、IBMの研究者が発表

有機化学を原子や分子ではなく、単語や文と考えることで、人工知能(AI)アルゴリズムを用いて化学反応を…

Chem-Station Twitter

PAGE TOP