[スポンサーリンク]

スポットライトリサーチ

電解液中のイオンが電気化学反応の選択性を決定する

[スポンサーリンク]

第595回のスポットライトリサーチは、物質・材料研究機構(NIMS) 若手国際研究センター(ICYS)でICYSリサーチフェローをされている久米田 友明 さんにお願いしました。

今回ご紹介するのは、酸素還元反応のメカニズムに関する研究についてです。燃料電池において重要な酸素還元反応について、アルカリ性電解液中、白金電極上において電解質の陽イオンによって異なるメカニズムや選択性をとる微視的機構を初めて明らかにしたという報告になります。本成果は、Angewandte Chemie International Edition 誌 原著論文およびプレスリリースに公開されています。

Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)
Kumeda, T.; Laverdure, L.; Honkala, K.; Melander, M. M.; Sakaushi, K. Angew. Chem. Int. Ed. 2023, 62, e202312841. DOI: 10.1002/anie.202312841

研究室を主宰されている坂牛健 主幹研究員から、久米田さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

久米田さんは千葉大学の星・中村研究室で博士号を取得され、その後ポスドクとしてNIMSに来てくれました。星・中村研は単結晶電極を用いた電気化学実験で世界的に知られており、久米田さんはその研究室のエースとして活躍していたと伺っておりました。実際に彼の研究力は高く、その後はその能力が評価され学振PDに採択され、現在はNIMSのICYSリサーチフェローとして活躍しております。ICYSリサーチフェローは高年棒や毎年の研究費以外にもNIMSの定年制研究員に応募する際に優遇され、ICYSリサーチフェローの50%程度が定年制研究員として採用されています。このため、このポジションには世界中から応募があり、これに採用されたといことは久米田さんの実力が相当高いことを示しております。

久米田さんは、私が自分の実験室を立ち上げる時に来てくれました。そのため、当該論文で大活躍した単結晶電極の実験も当初は実験系が最適化されていないために再現性が悪かったり関係する装置を一通り立ち上げてもらったりと、久米田さんには苦労をかけました。さて、NIMSに赴任した当初、久米田さんには電気化学反応における量子トンネル効果の観測に関する研究をしてもらっていました。その研究を進めている中で、カチオン種によって単結晶白金(111)表面上での酸素還元反応が4電子反応だったりそこに2電子反応が混ざってきたりすることに気づきました。これがなぜなのかを調べてくうちに、この2電子反応は外圏型電子移動が関与する反応機構によるものであることが理解できました。この研究成果は一見単純に見えるかもしれませんが、高度な電気化学実験から得られる極限まで研ぎ澄まされたデータに最先端の電気化学理論を適用して初めて解き明かすことができる知見です。また物理電気化学の分野において、内圏型と外圏型の電子移動の選択性がどのように決定されているのかという問題は非常に重要であり、20世紀初頭から現在に至るまで多くの研究者によって研究されてきております(その中でMarcusは1992年に電子移動反応理論でノーベル化学賞を受賞しました)。この点、当該成果は久米田さんが持つ世界トップレベルの単結晶電極電気化学実験の腕だからこそ明らかにできた古くもあり新しくもある分野における新奇な発見といえます。是非、久米田さんには今後も研ぎ澄まされた唯一無二の研究成果を挙げ続けて電気化学で世界をリードできる研究者に成長してもらいたいと思っております。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

本研究では、燃料電池の反応として知られる酸素還元反応の反応機構が電解液中のイオンによって制御されることを解明しました。酸素還元反応には「内圏型反応」と「外圏型反応」の2種類の反応経路があります。内圏型反応では反応物であるO2分子が電極表面に吸着して電子やプロトンの授受が行われ、白金電極を用いた場合はH2OまたはOHへと還元されます。一方、外圏型反応ではO2分子は電極表面に吸着せずに反応が進行し、H2O2またはHO2が生成します。このように酸素還元反応では反応経路によって生成物や反応に関与する電子数が異なるため、反応機構を制御することが重要となります。例えば、燃料電池においてはより高い起電力が得られる内圏型反応を選択的に進行させる必要があります。

今回、アルカリ性電解液中における白金電極上の酸素還元反応において、電解質の陽イオンが反応機構に与える影響を実験と理論計算の両面から調べました。その結果、KイオンやNaイオンを含む電解液中では内圏型反応が支配的であるのに対し、Liイオンを含む溶液中では外圏型反応が起こりやすくなることがわかりました。これはLiイオンが外圏型反応の反応中間体であるO2や外圏型の電子・プロトン移動に必要な化学種を安定化させるためだと考えられます。従来は電極材料によって反応機構を制御する方法が一般的でしたが、今後は電極と電解液の相乗効果によって様々な電気化学反応でより高い反応選択性の達成や、新しい反応経路の解明が期待されます。

図1. 本研究で解明したアルカリ性電解液中における白金電極上の酸素還元反応メカニズム

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

実験で電解液のイオンによって反応機構が異なる結果が出たことが印象に残っています。この研究は酸素還元反応における律速過程や量子力学的トンネル効果を調べることが元々のテーマでした。従来通り白金電極上では内圏型反応が支配的であると私たちも考えており、速度論的同位体効果という手法を用いて内圏型反応における電子・プロトン移動機構の解明を目指していました。当初は電解質にKイオンを使用していましたが、試しに他の電解質で測定してみたところLiイオン中で外圏型反応を示唆する結果が得られたので非常に驚きました。この結果を受けて、内圏型反応と外圏型反応の選択性の解明に向けて研究を進めることにしました。また、速度論的同位体効果を研究していたときに、私たちの実験結果と共同研究者の方々による理論計算がおおよそ一致したときはうれしかったです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究は研究を始めてから論文が出版されるまでにおよそ3年かかっており、論文化に時間がかかったことが一番大変だったと思います。2022年5月時点で論文の核となるデータはすべて揃っており、プレプリントサーバで成果を公開しました(arXiv:2205.00719)。それからアクセプトまでの約1年半はとにかく簡潔でわかりやすい論文を目指して、追加実験や論文の再構成を行いました。特に、白金電極上で外圏型反応が進行することを証明することが大きな課題でしたので、可能な限り多くのアプローチから実験を行い、科学的正当性を丁寧に説明することを心掛けました。原稿の推敲段階では、私の専門的でわかりにくい文章を坂牛先生や共同研究者の方々が一般的でわかりやすく修正していただき大変感謝しております。

Q4. 将来は化学とどう関わっていきたいですか?

本研究のテーマである白金電極上の酸素還元反応は電極触媒反応のモデルとして非常に長い研究の歴史があります。すでに研究し尽くされているように思えても、アプローチを変えることで重要な発見につながるということを今回改めて感じました。本研究では、先入観にとらわれない実験と共同研究者の方による高精度な理論的アプローチが結果につながったと思います。今後も柔軟な思考で研究を行い、多くの電気化学現象の解明に貢献できれば幸いです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後までご覧いただきありがとうございます。本研究成果はプレスリリースが出されていますので、そちらもご覧いただければ幸いです。より内容に興味をお持ちいただいた方には、ぜひ原著論文(オープンアクセス)にも目を通していただければと思います。論文本体はかなり簡潔にまとまっており、Supporting Information (SI)に補足的な説明や議論がしっかりとまとめられています。本研究を通して、一人でも多くの方に電気化学の面白さを感じていただければうれしいです。

最後に、本研究でご指導いただいた物質・材料研究機構の坂牛先生、共同研究先であるユヴァスキュラ大学(フィンランド)のMelander博士、Laverdure博士、Honkala教授、そして本研究を取り上げてくださったChem-Stationのスタッフの皆様に心より感謝を申し上げます。

研究者の略歴

名前:久米田 友明くめだ ともあき
所属:物質・材料研究機構(NIMS) 若手国際研究センター(ICYS)
略歴:2020年3月 千葉大学大学院融合理工学府先進理化学専攻 博士後期課程修了
2020年4月 物質・材料研究機構 NIMSポスドク研究員
2021年4月 物質・材料研究機構 日本学術振興会特別研究員PD
2023年4月~現在 物質・材料研究機構 ICYSリサーチフェロー

関連リンク

  1. Cation Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111):原著論文
  2. 電解液のイオンが電気化学反応の選択性を支配する~高価な電極材料に頼らない高効率なエネルギー変換・材料合成技術に期待~:プレスリリース

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. JEOL RESONANCE「UltraCOOL プローブ」: …
  2. 【無料】化学英語辞書がバージョンアップ!
  3. アカデミックの世界は理不尽か?
  4. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  5. 「タキソールのTwo phase synthesis」ースクリプ…
  6. 会社でも英語を重視?―さて詮なきことか善きことか
  7. 総収率57%! 超効率的なタミフルの全合成
  8. 合成とノーベル化学賞

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有用なりん化合物
  2. 有機合成化学協会誌2019年7月号:ジアステレオ選択的Joullié-Ugi三成分反応・(-)-L-755,807 の全合成・結晶中構造転移・酸素付加型反応・多孔性構造体
  3. 社会に出てから大切さに気付いた教授の言葉
  4. Retraction watch リトラクション・ウオッチ
  5. 2021年ノーベル化学賞は「不斉有機触媒の開発」に!
  6. MEDCHEM NEWS 32-2号 「儲からないが必要な薬の話」
  7. 徹底比較 トラックボールVSトラックパッド
  8. 【誤解してない?】4s軌道はいつも3d軌道より低いわけではない
  9. ゼナン・バオ Zhenan Bao
  10. クロム光レドックス触媒を有機合成へ応用する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年2月
 1234
567891011
12131415161718
19202122232425
26272829  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP