[スポンサーリンク]

odos 有機反応データベース

鈴木・宮浦クロスカップリング Suzuki-Miyaura Cross Coupling

[スポンサーリンク]

概要

  • パラジウム触媒を用い、有機ホウ素化合物と有機ハロゲン化合物を、クロスカップリングさせる反応。条件が比較的温和であり官能基選択性も高く、数あるパラジウムカップリングのなかでも使いやすい反応である。
  • 様々な有機ホウ素化合物を反応に用いることができるが、その中でも有機ボロン酸は合成しやすく、水や空気に安定で結晶性が高い。ホウ素を含む副生成物が水溶性で無毒など、様々な利点もあり、最も使い勝手がよい。工業スケールへの展開もなされている。
  • 現在では様々な有機ボロン酸が試薬会社から市販されており、それほど手間をかけずにビアリール系化合物を合成できる環境にある。医薬品合成・精密有機合成はもちろんのこと、化学繊維や液晶分子、有機マテリアルの合成などにも用いられている。日本人の名を冠する人名反応の中では、もっとも有名かつ実用性の高い反応の一つといえる。
  • sp3炭素-ホウ素結合はトランスメタル化が遅く、速いβ-水素脱離が優先する傾向にある。このため、カップリングに用いることが難しいとされてきた。近年では数多の研究の結果、B-アルキル型の鈴木クロスカップリングがに最適な触媒系が見いだされ、複雑な化合物の炭素骨格構築に頻用されている。詳細はDanishefskyNicolaouらの総説(下記文献)を参照されたい。
  • 近年パラジウム触媒以外の遷移金属触媒を用いたり、有機ハロゲン化物以外を用いた鈴木ー宮浦クロスカップリング型反応も数多く報告されている。

基本文献

  •  Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866. doi: 10.1039/C39790000866
  •  Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 197920, 3437. doi:10.1016/S0040-4039(01)95429-2
  •  Suzuki, A. Pure. Appl. Chem. 1985, 57, 1749. DOI: 10.1351/pac198557121749
  •  Review for Suzuki Coupling Reaction: Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. doi:10.1021/cr00039a007
  •  Review for B-alkyl Suzuki Coupling Reaction: Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. Int. Ed. 200140, 4544. [abstract]
  • 西田まゆみ, 田形 剛, 有機合成化学協会誌 2004, 62, 737.
  • Review for Pd-Catalyzed Cross Coupling in Total Synthesis: Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 200544, 4442. doi:10.1002/anie.200500368
  • 鈴木章, 有機合成化学協会誌 2005, 63, 312.
  • Review for Suzuki–Miyaura coupling using Buchwald ligands:  Martin, R.; Buchwald, S. L. Acc. Chem. Res 2008, 41, 1461. DOI: 10.1021/ar800036s
  • Review for Selection of boron reagents: Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412. DOI: 10.1039/C3CS60197H

開発の歴史

1979年、当時北海道大学の鈴木章教授と宮浦憲夫助手はビニルホウ素化合物とアルケニルハライドのクロスカップリング反応を報告した。パラジウム触媒(テトラキストリフェニルホスフィンパラジウム)存在下、ナトリウムエトキシドもしくは、水酸化カリウム水溶液を加えると反応が劇的に加速した。

鈴木章(左)と宮浦憲夫(右)

鈴木章(左)と宮浦憲夫(右)

 

反応機構

通常炭素-ホウ素結合は強く(有機ホウ素化合物は安定)、そのままではトランスメタル化は起こらない。当量以上の塩基を加え、トランスメタル化活性なボレート型にしてやる必要がある。それゆえ塩基性条件下に不安定な化合物には用いることが難しいという欠点もある。
x-ene-10.gif

反応例

  • 近年のクロスカップリングの進歩はめざましく、低反応性のアリールクロライドも反応に用いることができるようになった。[1][2] suzuki_coupling_8.gif
  • 本反応の高い官能基選択性を活かし、Palytoxinの全合成が達成されている。分子量が巨大になるほど反応点同士の接近確率が低くなるため、一般にクロスカップリング反応は困難になる。本合成において岸らは、水酸化タリウムを塩基として加えることで劇的に反応性が向上されることを見出している。[3]suzuki_coupling_5.gif
  • Ciguatoxinの合成研究[4]:三環性化合物の収束的合成にB-アルキル鈴木クロスカップリングが用いられている。 相方のエノールホスフェートはエノールトリフラートに比べ安定性の面で優れている。
    suzuki_coupling_6.gif
  • 有機ホウ素化合物を経由しない鈴木クロスカップリング:9-BBN-OMeと任意の有機リチウム試薬/Grignard試薬の反応によりボレートを前調製し、鈴木カップリングを行う手法。特にメチル・アルキニル基の場合、ハイドロボレーションで試剤が調製できないため、本法の有用性が高い。
    suzuki_coupling_9.gif

 

  • 2級アルキルハライドとの鈴木カップリング[5]:通常酸化的付加後の金属-アルキル中間体はβ水素脱離によって速やかに分解する。2級アルキルハライドの場合にはそれが顕著であり、これまでに成功例はなかった。FuらはNi触媒と配位子の膨大なスクリーニングの結果、この困難なカップリング反応を実現させている。suzuki_coupling_7.gif

 

  • 有機トリフルオロボレート塩は空気・水に安定な結晶性化合物である。ボロン酸と比して、当量調節・精製が容易という利点がある。近年ではこれをクロスカップリングパートナーとして用いる研究がなされている。[6] 環状トリオールボレート塩[7]も同様の目的に使用可能であることが報告されている。 suzuki_coupling_11.gif

 

 

2016-01-28_00-07-42

complanadine3

 

2015-09-17_11-01-47

  • 芳香族ニトロ化合物のクロスカップリング反応[13]:芳香族ニトロ化合物を求電子剤として用いる鈴木–宮浦カップリング反応。この反応の鍵過程は、Ar–NO2結合の酸化的付加である。通常、ニトロ化合物と低原子価金属種との反応では、ニトロ基の還元が進行し、ニトロソ化合物やアニリン類が生ずるが、、BrettPhos-Pd(0)がAr–NO2結合の酸化的付加に極めて有効であり、望みのビアリールカップリングが反応が進行する。

実験手順

  • アリールクロライドを用いる鈴木-宮浦クロスカップリング[9] suzuki_coupling_10.gif

実験のコツ・テクニック

  • ※0価のパラジウムは酸素によって失活するため、アルゴンor窒素雰囲気下に反応を行う。基質によっては、溶媒の凍結脱気も必要。

その他

参考文献

  1.  Fu, G. C. et al. Angew. Chem. Int. Ed. 199937, 3387. [abstract]
  2. Buchwald, S. L. et al. J. Am. Chem. Soc. 1999121, 9550. DOI: 10.1021/ja992130h
  3. Kishi, Y. et al. J. Am. Chem. Soc. 1989111, 7530; ibid. 1994, 116, 11205.
  4. Sasaki,M.; Tachibana, K. et al. Angew. Chem. Int. Ed. 200140, 1090. [abstract]
  5. Fu, G. C. et al. J. Am. Chem. Soc. 2004126, 1340. DOI: 10.1021/ja039889k
  6. (a) Stefani, H. A. et al. Tetrahedron 200763, 3623. doi:10.1016/j.tet.2007.01.061 (b) Molandar, G. A. et al. Aldrichimica Acta 200538, 49. (c) Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2012, 51, 9385. DOI: 10.1002/anie.201203930
  7. (a) Yamamoto, Y.; Takizaha, M.; Yu, X.-Q.; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928. doi:10.1002/anie.200704162 (b) Yamamoto,Y. : Heterocycles, 2012, 85, 799 –819. DOI: 10.3987/REV-12-728
  8. Woerly, E. M.; Cherney, A. H.; Davis, E. K.; Burke, M. D. J. Am. Chem. Soc. 2010, 132, 6941. doi: 10.1021/ja102721p
  9. Altman, R. A.; Buchwald, S. L. Nature Protocols 20072, 3115. doi:10.1038/nprot.2007.411
  10. Hatakeyama,T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike,H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010132, 10674. doi:10.1021/ja103973a
  11. Fischer, D.F.; Sarpong, R. J. Am. Chem. Soc. 2010132, 5926. DOI: 10.1021/ja101893b
  12. Muto, K.; Yamaguchi, J.; Musaev. D. G.; Itami, K. Nature Commun2015, 6, 7508. DOI: 10.1038/ncomms8508
  13. (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.  DOI: 10.1021/cr100259t (b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. DOI: 10.1021/cr100327p
  14. Yadav, M. R.: Nagaoka, M.; Kashihara, M.;  Zhong, R.-L.; Miyazaki, T.; Sakaki, S.; Nakao Y. J. Am. Chem. Soc. 2017, 139, 9423. DOI: 10.1021/jacs.7b03159

関連反応

関連書籍

外部リンク

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. ヒドロホルミル化反応 Hydroformylation
  2. カンプス キノリン合成 Camps Quinoline Synt…
  3. フェイスト・ベナリー フラン合成 Feist-Benary Fu…
  4. ネニチェスク インドール合成 Nenitzescu Indole…
  5. ピナコールカップリング Pinacol Coupling
  6. エシュバイラー・クラーク反応 Eschweiler-Clarke…
  7. カラッシュ付加反応 Kharasch Addition
  8. 原子移動ラジカル重合 Atom Transfer Radical…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ウルリッヒ・ウィーズナー Ulrich Wiesner
  2. 古川 俊輔 Shunsuke Furukawa
  3. Scifinderが実験項情報閲覧可能に!
  4. Ns基とNos基とDNs基
  5. 住友化学が通期予想据え置き、カギ握る情報電子化学の回復
  6. 改正 研究開発力強化法
  7. 芳香族求核置換反応 Nucleophilic Aromatic Substitution
  8. 金属から出る光の色を利用し、食中毒の原因菌を迅速かつ同時に識別することに成功!
  9. 耐薬品性デジタルマノメーター:バキューブランド VACUU・VIEW
  10. 低分子ゲル化剤の特性・活用と、ゲル化・増粘の基礎【終了】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」

人間の幸福感は、五感に依るところが大きい。化学は文明的で健康的な社会を支える物質を継続的に産み出して…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP