[スポンサーリンク]

odos 有機反応データベース

鈴木・宮浦クロスカップリング Suzuki-Miyaura Cross Coupling

[スポンサーリンク]

概要

  • パラジウム触媒を用い、有機ホウ素化合物と有機ハロゲン化合物を、クロスカップリングさせる反応。条件が比較的温和であり官能基選択性も高く、数あるパラジウムカップリングのなかでも使いやすい反応である。
  • 様々な有機ホウ素化合物を反応に用いることができるが、その中でも有機ボロン酸は合成しやすく、水や空気に安定で結晶性が高い。ホウ素を含む副生成物が水溶性で無毒など、様々な利点もあり、最も使い勝手がよい。工業スケールへの展開もなされている。
  • 現在では様々な有機ボロン酸が試薬会社から市販されており、それほど手間をかけずにビアリール系化合物を合成できる環境にある。医薬品合成・精密有機合成はもちろんのこと、化学繊維や液晶分子、有機マテリアルの合成などにも用いられている。日本人の名を冠する人名反応の中では、もっとも有名かつ実用性の高い反応の一つといえる。
  • sp3炭素-ホウ素結合はトランスメタル化が遅く、速いβ-水素脱離が優先する傾向にある。このため、カップリングに用いることが難しいとされてきた。近年では数多の研究の結果、B-アルキル型の鈴木クロスカップリングがに最適な触媒系が見いだされ、複雑な化合物の炭素骨格構築に頻用されている。詳細はDanishefskyNicolaouらの総説(下記文献)を参照されたい。
  • 近年パラジウム触媒以外の遷移金属触媒を用いたり、有機ハロゲン化物以外を用いた鈴木ー宮浦クロスカップリング型反応も数多く報告されている。

基本文献

  •  Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 866. doi: 10.1039/C39790000866
  •  Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 197920, 3437. doi:10.1016/S0040-4039(01)95429-2
  •  Suzuki, A. Pure. Appl. Chem. 1985, 57, 1749. DOI: 10.1351/pac198557121749
  •  Review for Suzuki Coupling Reaction: Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. doi:10.1021/cr00039a007
  •  Review for B-alkyl Suzuki Coupling Reaction: Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. Int. Ed. 200140, 4544. [abstract]
  • 西田まゆみ, 田形 剛, 有機合成化学協会誌 2004, 62, 737.
  • Review for Pd-Catalyzed Cross Coupling in Total Synthesis: Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 200544, 4442. doi:10.1002/anie.200500368
  • 鈴木章, 有機合成化学協会誌 2005, 63, 312.
  • Review for Suzuki–Miyaura coupling using Buchwald ligands:  Martin, R.; Buchwald, S. L. Acc. Chem. Res 2008, 41, 1461. DOI: 10.1021/ar800036s
  • Review for Selection of boron reagents: Lennox, A. J. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412. DOI: 10.1039/C3CS60197H

開発の歴史

1979年、当時北海道大学の鈴木章教授と宮浦憲夫助手はビニルホウ素化合物とアルケニルハライドのクロスカップリング反応を報告した。パラジウム触媒(テトラキストリフェニルホスフィンパラジウム)存在下、ナトリウムエトキシドもしくは、水酸化カリウム水溶液を加えると反応が劇的に加速した。

鈴木章(左)と宮浦憲夫(右)

鈴木章(左)と宮浦憲夫(右)

 

反応機構

通常炭素-ホウ素結合は強く(有機ホウ素化合物は安定)、そのままではトランスメタル化は起こらない。当量以上の塩基を加え、トランスメタル化活性なボレート型にしてやる必要がある。それゆえ塩基性条件下に不安定な化合物には用いることが難しいという欠点もある。
x-ene-10.gif

反応例

  • 近年のクロスカップリングの進歩はめざましく、低反応性のアリールクロライドも反応に用いることができるようになった。[1][2] suzuki_coupling_8.gif
  • 本反応の高い官能基選択性を活かし、Palytoxinの全合成が達成されている。分子量が巨大になるほど反応点同士の接近確率が低くなるため、一般にクロスカップリング反応は困難になる。本合成において岸らは、水酸化タリウムを塩基として加えることで劇的に反応性が向上されることを見出している。[3]suzuki_coupling_5.gif
  • Ciguatoxinの合成研究[4]:三環性化合物の収束的合成にB-アルキル鈴木クロスカップリングが用いられている。 相方のエノールホスフェートはエノールトリフラートに比べ安定性の面で優れている。
    suzuki_coupling_6.gif
  • 有機ホウ素化合物を経由しない鈴木クロスカップリング:9-BBN-OMeと任意の有機リチウム試薬/Grignard試薬の反応によりボレートを前調製し、鈴木カップリングを行う手法。特にメチル・アルキニル基の場合、ハイドロボレーションで試剤が調製できないため、本法の有用性が高い。
    suzuki_coupling_9.gif

 

  • 2級アルキルハライドとの鈴木カップリング[5]:通常酸化的付加後の金属-アルキル中間体はβ水素脱離によって速やかに分解する。2級アルキルハライドの場合にはそれが顕著であり、これまでに成功例はなかった。FuらはNi触媒と配位子の膨大なスクリーニングの結果、この困難なカップリング反応を実現させている。suzuki_coupling_7.gif

 

  • 有機トリフルオロボレート塩は空気・水に安定な結晶性化合物である。ボロン酸と比して、当量調節・精製が容易という利点がある。近年ではこれをクロスカップリングパートナーとして用いる研究がなされている。[6] 環状トリオールボレート塩[7]も同様の目的に使用可能であることが報告されている。 suzuki_coupling_11.gif

 

 

2016-01-28_00-07-42

complanadine3

 

2015-09-17_11-01-47

  • 芳香族ニトロ化合物のクロスカップリング反応[13]:芳香族ニトロ化合物を求電子剤として用いる鈴木–宮浦カップリング反応。この反応の鍵過程は、Ar–NO2結合の酸化的付加である。通常、ニトロ化合物と低原子価金属種との反応では、ニトロ基の還元が進行し、ニトロソ化合物やアニリン類が生ずるが、、BrettPhos-Pd(0)がAr–NO2結合の酸化的付加に極めて有効であり、望みのビアリールカップリングが反応が進行する。

実験手順

  • アリールクロライドを用いる鈴木-宮浦クロスカップリング[9] suzuki_coupling_10.gif

実験のコツ・テクニック

  • ※0価のパラジウムは酸素によって失活するため、アルゴンor窒素雰囲気下に反応を行う。基質によっては、溶媒の凍結脱気も必要。

その他

参考文献

  1.  Fu, G. C. et al. Angew. Chem. Int. Ed. 199937, 3387. [abstract]
  2. Buchwald, S. L. et al. J. Am. Chem. Soc. 1999121, 9550. DOI: 10.1021/ja992130h
  3. Kishi, Y. et al. J. Am. Chem. Soc. 1989111, 7530; ibid. 1994, 116, 11205.
  4. Sasaki,M.; Tachibana, K. et al. Angew. Chem. Int. Ed. 200140, 1090. [abstract]
  5. Fu, G. C. et al. J. Am. Chem. Soc. 2004126, 1340. DOI: 10.1021/ja039889k
  6. (a) Stefani, H. A. et al. Tetrahedron 200763, 3623. doi:10.1016/j.tet.2007.01.061 (b) Molandar, G. A. et al. Aldrichimica Acta 200538, 49. (c) Lennox, A. J. J.; Lloyd-Jones, G. C. Angew. Chem. Int. Ed. 2012, 51, 9385. DOI: 10.1002/anie.201203930
  7. (a) Yamamoto, Y.; Takizaha, M.; Yu, X.-Q.; Miyaura, N. Angew. Chem. Int. Ed. 2008, 47, 928. doi:10.1002/anie.200704162 (b) Yamamoto,Y. : Heterocycles, 2012, 85, 799 –819. DOI: 10.3987/REV-12-728
  8. Woerly, E. M.; Cherney, A. H.; Davis, E. K.; Burke, M. D. J. Am. Chem. Soc. 2010, 132, 6941. doi: 10.1021/ja102721p
  9. Altman, R. A.; Buchwald, S. L. Nature Protocols 20072, 3115. doi:10.1038/nprot.2007.411
  10. Hatakeyama,T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike,H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. J. Am. Chem. Soc. 2010132, 10674. doi:10.1021/ja103973a
  11. Fischer, D.F.; Sarpong, R. J. Am. Chem. Soc. 2010132, 5926. DOI: 10.1021/ja101893b
  12. Muto, K.; Yamaguchi, J.; Musaev. D. G.; Itami, K. Nature Commun2015, 6, 7508. DOI: 10.1038/ncomms8508
  13. (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.  DOI: 10.1021/cr100259t (b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. DOI: 10.1021/cr100327p
  14. Yadav, M. R.: Nagaoka, M.; Kashihara, M.;  Zhong, R.-L.; Miyazaki, T.; Sakaki, S.; Nakao Y. J. Am. Chem. Soc. 2017, 139, 9423. DOI: 10.1021/jacs.7b03159

関連反応

関連書籍

外部リンク

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 衣笠反応 Kinugasa Reaction
  2. ノリッシュ反応 Norrish Reaction
  3. ガッターマン・コッホ反応 Gattermann-Koch Rea…
  4. P-キラルホスフィンの合成 Synthesis of P-chi…
  5. クネーフェナーゲル縮合 Knoevenagel Condensa…
  6. ヴィルスマイヤー・ハック反応 Vilsmeier-Haack R…
  7. カンプス キノリン合成 Camps Quinoline Synt…
  8. 求核置換反応 Nucleophilic Substitution…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進
  2. Open Babel を使ってみよう~ケモインフォマティクス入門~
  3. アントニオ・M・エチャヴァレン Antonio M. Echavarren
  4. 単純なアリルアミンから複雑なアリルアミンをつくる
  5. 化学系企業の採用活動 ~現場の研究員視点で見ると~
  6. 石テレ賞、山下さんら3人
  7. 味の素ファインテクノの技術と社会貢献
  8. 有機触媒 / Organocatalyst
  9. 低温低圧・常温常圧窒素固定の反応開発 最新情報サマリー その1
  10. 第32回 液晶材料の新たな側面を開拓する― Duncan Bruce教授

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第一回ケムステVプレミアレクチャー「光化学のこれから ~ 未来を照らす光反応・光機能 ~」を開催します!

ノーベル賞の発表も来週に迫っていますし、後期も始まりますね。10月から新しく始まるシーズンに、どこと…

細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドができる

第276回のスポットライトリサーチは、東京農工大学大学院工学研究院 准教授の吉野 大輔(よしの だい…

クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!

9月23日に、クラリベイト・アナリティクス社から、2020年の引用栄誉賞が発表されました。こ…

アズワンが第一回ケムステVプレミアレクチャーに協賛しました

さて先日お知らせいたしましたが、ケムステVプレミアクチャーという新しい動画配信コンテンツをはじめます…

化学者のためのエレクトロニクス講座~代表的な半導体素子編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

ケムステバーチャルプレミアレクチャーの放送開始決定!

主に最先端化学に関する講演者をテーマ別で招待しオンライン講演を行っていただくケムステバーチャルシンポ…

Chem-Station Twitter

PAGE TOP