[スポンサーリンク]

世界の化学者データベース

田中耕一 Koichi Tanaka

田中耕一(たなか こういち、1959年8月3日- )は、日本の化学者・エンジニアである。島津製作所フェロー・東北大学名誉博士。質量分析手法(マトリックス支援レーザー脱離イオン化法:MALDI)の開発によって、タンパク質をはじめとする生体高分子の構造解析を飛躍的に加速させた。この業績によって2002年ノーベル化学賞を受賞している(写真:島津製作所HP)。

 経歴

1959年8月3日、富山県富山市に生まれる。1983年東北大学工学部電気工学科卒業後、島津製作所に入社。2002年、ジョン・B・フェンクルト・ビュートリヒらとともにノーベル化学賞を共同受賞。のちに東北大学より名誉博士号を受ける。同年島津製作所フェローに昇任。

1983 東北大学工学部卒業
1983 島津製作所 入社
2002 東北大学名誉博士号
2002 島津製作所フェロー
2003 田中耕一記念質量分析研究所 所長
2010 田中最先端研究所 所長(兼任)
2012 島津製作所 シニアフェロー

 

受賞歴

1989 日本質量分析学会 奨励賞
2002 ノーベル化学賞
2002 文化勲章
2002 文化功労者

 

 研究

マトリクス支援レーザー脱離イオン化質量分析法(Matrix-Assisted Laser Desorption Ionization Mass Spectrometry:MALDI-MS)の開発[1]

マトリックスと呼ばれる粘ちょう性の液体とサンプルを混合したものに、レーザー光を照射すると、マトリックスの表面が急速に加熱され、サンプルと共に気化される。励起状態にあるマトリックスとの化学反応によって、サンプルはイオン化される。大きなエネルギーを瞬間的に与えてイオン化可能なため、化合物の熱分解が抑制される。この特性は分子量のきわめて大きい化合物の分析、特に生体に存在するタンパク質などに対して威力を発揮する。飛行時間型質量分析計(Time of Flight;TOF)と組み合わせることにより、非常に高感度の検出が可能であり、10万以上の分子量を有する化合物の測定も可能となる。

本技術の開発によって生体分子の構造解析は飛躍的に進歩した。この業績に2002年のノーベル化学賞が授与されている。

間違って調製してしまったサンプルを「勿体ない」として使った結果見つかった技術です。セレンディピティ的逸話として有名。

2009年には最先端研究開発支援プログラム(FIRSTプログラム)に採択され、世界最高性能の質量分析システムを開発し、当該システムを用いたがんやアルツハイマー病の新たな診断・治療手法の確立に向けて、バイオマーカーの発見やがん創薬のための標的分子候補の発見に努める事を目的として研究を行った(2014年終了)

名言集

  • 「失敗からは必ず新たな発見がある。最近は、失敗するのが楽しみになってきました」
  • 「『常識』の反対は、『独創的』である。」

関連動画

 

コメント&その他

  • サラリーマンノーベル賞受賞者として時の人となった田中フェローですが、本人は必要以上に有名になることを望まず、イメージばかりが一人歩きしていくことに悩んだという話です。研究の優れた点がどうとかよりも、分かりやすい見た目や人柄ばかりを取り上げイメージ作りしていくという、当時のマスコミの報道姿勢も、あまり褒められたものではないな、と正直感じたものです。田中フェローがそのような騒動・混乱の中でも自分を見失わずにいられたのは、「生涯一エンジニア」としての立ち位置をしっかりと見定めて毎日を生きているからでしょう。これほどの芯の強さや確固たる人生哲学を持って生きて行くにはどうすればよいのか?――彼の研究人生からは、見習うべき点が多々あると思えます。

 

関連文献

  1.  Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151. doi:10.1002/rcm.1290020802

関連書籍

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 西林 仁昭 Yoshiaki Nishibayashi
  2. 真島利行系譜
  3. ジャンフェン・カイ Jianfeng Cai
  4. 木曽 良明 Yoshiaki Kiso
  5. フランツ=ウルリッヒ・ハートル Franz-Ulrich Har…
  6. イリヤ・プリゴジン Ilya Prigogine
  7. ヴィ·ドン Vy M. Dong
  8. リチャード・シュロック Richard R. Schrock

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. メバスタチン /Mevastatin
  2. 天然の日焼け止め?
  3. シリリウムカルボラン触媒を用いる脱フッ素水素化
  4. 可視光エネルギーを使って単純アルケンを有用分子に変換するハイブリッド触媒系の開発
  5. もっと化学に光を! 今さらですが今年は光のアニバーサリーイヤー
  6. マイルの寄付:東北地方太平洋沖地震
  7. 有機ラジカルポリマー合成に有用なTEMPO型フリーラジカル
  8. 高分子材料中の微小異物分析技術の実際【終了】
  9. サミュエル・ダニシェフスキー Samuel J. Danishefsky
  10. ロジャー・チェン Roger Y. Tsien

関連商品

注目情報

注目情報

最新記事

(−)-Salinosporamide Aの全合成

(−)-salinosporamide Aの立体選択的全合成が達成された。アザ-ペイン転位/ヒドロア…

クラウド版オフィススイートを使ってみよう

クラウド版オフィススイートとはOffice onlineやGoogle ドライブなどのことで、ソフト…

NHCが触媒する不斉ヒドロフッ素化

キラルなN–ヘテロ環状カルベン(NHC)を触媒として用いたα,β-不飽和アルデヒドに対する不斉ヒドロ…

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~

動物や臓器に代わる画期的な実験ツールとして注目される生体機能チップ、原薬(API)合成に不可欠なプロ…

Chem-Station Twitter

PAGE TOP