[スポンサーリンク]

一般的な話題

虫歯とフッ素のお話① ~どうして歯磨きにフッ素が使われるの??~

[スポンサーリンク]

皆さんが普段使う歯磨き粉 (歯磨剤) の広告において、たびたび”フッ素配合”“フッ素の力で歯を強く”といった内容のものを見かけるかと思います。
実際、世間ではフッ素は歯を強くし、虫歯 (う蝕) を予防する効果があると認識されており、フッ素を含んだ歯磨剤は世界的にも広く利用されております。日本でも市販されている歯磨剤の約9割にはフッ素が配合されています。[1]

では、このような歯磨剤に含まれる”フッ素”とは何なのか?

もちろんフッ素分子 (F2) ではなく、フッ化物イオン (F) が遊離するフッ化物などのフッ素含有化合物にあたります。
このフッ化物が歯磨剤に利用されるようになった歴史的背景やその作用メカニズムについて見ていきたいと思います。

う蝕予防におけるフッ化物応用の背景

う蝕とフッ化物の関係について注目される様になったきっかけとしては、1900年代初頭、米国のある特定の地方の住民らに共通して歯に白斑や着色が多くあることが認められ、歯科医師McKayとBlackにより、この着色歯が”斑状歯 (mottle teeth)”の症例として報告されたことに端を発したとされています。[2,3]
彼らの広範な調査により、この症例は”特定の水源を利用していること”、”斑状歯流行地域の人達にはう蝕が少ないこと”などを見出しました。

当時の分析技術では原因特定にこそ至りませんでしたが、その後の調査でこの斑状歯の発症原因が飲料水中に存在するフッ化物に起因していることが明らかとなってから、Deanらに代表されるような疫学調査 (Fig. 1) を通し、フッ化物のう蝕抵抗への有効性ならびにその安全性に関する研究が進められ、現在のようなう蝕予防におけるフッ化物応用へと展開されました。

Fig. 1. 全身的応用に向けた疫学調査.(Dean, HT., et al., 1941. 出展: 文献[1]

なお、う蝕予防におけるフッ化物の応用としては、フロリデーションと呼ばれる飲料水に規定濃度のフッ化物が添加する”全身的応用”と、歯科医療機関におけるフッ化物歯面塗布や学校等における集団でのフッ化物洗口、家庭におけるフッ化物配合歯磨剤の使用などの”局所的応用”の二つに大別されます。
海外では全身的応用も試みられておりますが、日本の口腔ケアでは局所的応用が中心的に実施されています。

 *“斑状歯”とは特に歯の生長期に高濃度のフッ化物イオンを含む水を摂取すると生じる疾患で、歯に縞模様の白濁を生じ、次第に着色、ひどくなると歯の一部分の欠落を起こす病気のことです。

う蝕予防のメカニズム

フッ化物のう蝕予防に関して、日本口腔衛生学会によると次のようなメカニズムにて効果が得られると説明されています (Fig. 2)。[1,3-5]

摂取されたフッ化物イオンは、

第一は歯に作用し、歯のエナメル質を構成するヒドロキシアパタイト [Ca10(PO4)6(OH)2] の結晶性を改善、再石灰化促進、さらにヒドロキシアパタイトを構成する水酸基をフッ素化することで酸に対して抵抗性の高いフルオロアパタイト [Ca10(PO4)6F2] ならびに部分フッ素化体であるフルオロヒドロキシアパタイト [Ca10(PO4)6Fx(OH)2-x] を生成します。これらにより歯質が強化され、さらに耐酸性を向上させます。

第二は口腔内の細菌に作用し、主に歯垢中の細菌の解糖系における酵素作用や菌体内からH+を排出するH+-ATPaseを阻害します。これらの阻害作用は細菌の酸産生の抑制やう蝕病原性の減弱化を引き起こします。

摂取されたフッ化物は、上述ような歯や細菌に対しこのような過程を経て、う蝕の予防に寄与していると考えられております。

Fig. 2. う蝕予防におけるフッ素の作用メカニズム.

エナメル質の構成要素であるヒドロキシアパタイトとフッ化物イオンとの反応はその濃度や頻度によっても変わってくることが知られています (Fig. 3)。

たとえば、高濃度フッ化物イオンを単発で作用させた場合 (歯科医師などが実施するフッ化物歯面塗布がこれに当たる)、エナメル質表面では複分解反応が起こり、フッ化カルシウム (CaF2) が生成されると同時にリン酸イオン (PO43-) が流出されます。生成されたCaF2もやがて流出し、同時にエナメル質と反応してフルオロヒドロキシアパタイトが生成されます。[6]

一方で、低濃度フッ化物溶液を長期間にわたりエナメル質に作用させるた場合(家庭でのフッ化物洗口やフッ化物歯磨剤を用いた歯磨きがこれに当たる)、CaF2の生成は生じにくく、エナメル質とフッ素の反応は徐々に進み、結晶性の高いフルオロヒドロキシアパタイトが生成されます。[7]

<高濃度フッ素イオンとの反応>
  Ca10(PO4)6(OH)2 + 20F → 10CaF2 + 6PO43- + 2OH
  Ca10(PO4)6(OH)2 + CaF2 → Ca10(PO4)6F2 + 2OH + Ca2+

<低濃度フッ化物イオンとの反応>
  Ca10(PO4)6(OH)2 + 2F → Ca10(PO4)6F2 + 2OH

Fig. 3. フッ化物イオンとヒドロキシアパタイトとの反応.

なお、酸性環境中では中間体である第2リン酸カルシウム (CaHPO4·2H2O) が形成され、効果的にヒドロキシアパタイト中にFが取り込まれるとされています。[8]

先に示したFig. 2にて、フッ化物イオンの作用効果について種々説明しましたが、最近の研究では、ヒドロキシアパタイト結晶内部のフッ素置換による安定化よりも、ヒドロキシアパタイト結晶周囲へ弱く結合したフッ化物 (弱結合性フッ化; loosely bound F) の効果や共存するフッ素イオンがう蝕予防の主たる因子であるのではと説明されています。[9] この弱く結合したフッ化物は、例えばフッ化物配合歯磨剤由来のフッ化物イオン (F) と歯質やう蝕溶解由来、唾液由来のカルシウムイオン (Ca2+) との結合形成により生成されたCaF2やCaF2様沈着物のことです。

これが細菌による酸産生などにより口腔内pHが低下することで、Fとして遊離し、徐放することでF供給源としての役割を果たすとされています。

今回、歯磨剤にフッ化物が用いられるようになった歴史的背景から、う蝕予防に働きかけるメカニズムのご紹介をしました。
化学(ばけがく)者ではなかなか馴染みのない分野かと思いますが、口腔業界ではこのように説明されているようです。

次回は、みなさんが日常で使われている歯磨剤に使用されているフッ化物やその特徴について見ていきたいと思います(虫歯とフッ素のお話② ~歯磨き粉のフッ素~)。

参考文献

[1] う蝕予防の実際 フッ化物局所応用実施マニュアル 日本口腔衛生学会フッ化物応用委員会編
[2] Tsutsuki, A., J. Natl. Inst. Public Health, 2003, 52, 32. リンク: 国立国会図書館デジタルコレクション
[3] Udagawa, N., et al., Kindney Metab Bone Dis, 2017, 30, 63. DOI: 10.19020/J02201.2017161100
[4] 郡司明彦ら, 歯薬療法, 2010, 29, 1-8. DOI: 10.11263/jsotp.29.1
[5] 須田立雄, 早川太郎, 口腔生化学 第6, 医歯薬出版
[6] 中西國夫ら 口腔衛生学会雑誌, 1984, 34, 39-53. DOI: 10.5834/jdh.34.109
[7] 可児瑞夫ら 口腔衛生学会雑誌, 1980, 30, 150-159. DOI: 10.5834/jdh.30.150
[8] Chow, L.C. et al., J. Dent. Res., 1975, 54, 65-76. DOI: 10.1177/00220345750540013901

[9] 押野一志ら, 小児歯科学雑誌, 2003, 41, 580-587. DOI: 10.11411/jspd1963.41.3_580

関連書籍

関連リンク

〇ケムステ関連記事:虫歯とフッ素のお話② ~歯磨き粉のフッ素~ https://www.chem-station.com/molecule/2021/05/f2.html

ちおふぇん

投稿者の記事一覧

世の中の課題に対して分子レベルでのモノづくりからの解決を夢見る有機材料屋さん。
興味の対象は構造と物性およびそのその発現メカニズム。
好きな読み物は月刊化学のシリーズ連載。

関連記事

  1. サラシノール/Salacinol
  2. ちょっと変わったイオン液体
  3. 論文執筆で気をつけたいこと20(2)
  4. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活…
  5. ヘリウムガスのはなし
  6. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~
  7. 有機合成化学協会誌2024年2月号:タンデムボラFriedel-…
  8. 新しい構造を持つゼオライトの合成に成功!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. (–)-Daphenezomine AとBの全合成
  2. ストリゴラクトン類縁体の構造活性相関研究 ―海外企業ポスドク―
  3. 様々な化学分野におけるAIの活用
  4. 火力発電所排気ガスや空気から尿素誘導体の直接合成に成功
  5. 化学工場で膀胱がん、20人に…労災認定議論へ
  6. 化学五輪、日本代表4人の高校生が「銅」獲得
  7. 韓国に続き日本も深刻化?トラック運送に必要不可欠な尿素水が供給不安定
  8. 硤合不斉自己触媒反応 Soai Asymmetric Autocatalysis
  9. 日本薬学会第139年会 付設展示会ケムステキャンペーン
  10. Reaxys Prize 2012受賞者決定!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年5月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

“見た目はそっくり、中身は違う”C-グリコシド型擬糖鎖/複合糖質を開発

第598回のスポットライトリサーチは、九州大学大学院薬学府(平井研究室)博士後期課程3年の森山 貴博…

触媒化学との「掛け算」によって展開される広範な研究

前回の記事でご紹介したとおり、触媒化学融合研究センター(触媒センター)では「掛け…

【Q&Aシリーズ❸ 技術者・事業担当者向け】 マイクロ波プロセスのスケールアップについて

<内容>※本セミナーは、技術者および事業担当者向けです。今年に入って全3回に…

「産総研・触媒化学融合研究センター」ってどんな研究所?

2013年に産総研内に設立された触媒化学融合研究センターは、「触媒化学」を中心に据えつつ、他分野と「…

低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?

第597回のスポットライトリサーチは、北海道大学大学院総合化学院 有機化学第一研究室(鈴木孝紀研)の…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/03/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

フッ素の特性が織りなす分子変換・材料化学(CSJカレントレビュー:47)

(さらに&hellip;)…

日本薬学会第144回年会「有機合成化学の若い力」を開催します!

卒業論文などは落ち着いた所が多いでしょうか。入試シーズンも終盤に差し掛かり、残すところは春休…

ホウ酸団子のはなし

Tshozoです。暇を見つけては相変わらず毎日ツイッターでネタ探しをしているのですが、その中で下…

活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分子状タングステン酸化物を複合化〜

第596回のスポットライトリサーチは、東京大学 大学院工学系研究科(山口研究室)修士課程 2年の山口…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP