[スポンサーリンク]

天然物

ペンタレネン Pentalenene

[スポンサーリンク]

Pentalenene_structure

ペンタレネン(Pentalenene)は複数の放線菌(Streptomyces chromofuscus, S. griseochromogenes, S. baarnensis)により生産されているセスキテルペンである。グラム陽性菌、陰性菌、カビに対して活性を持つ抗生物質ペンタレノラクトン(Pentalenolactone)の生合成中間体である。1980年に瀬戸治男により単離された(文献1)。生合成の観点からは、特徴的なトリキナン骨格(triquinane structure)をどのように形成しているかについて様々な研究がなされて来た。(ポリシクロペンタノイドをポリキナンと称し、縮環数に応じてジキナン、トリキナンなどに分類される。)

 

ペンタレネンの生合成

ペンタレネンの生合成研究は、天然物界の大御所David Caneにより行なわれて来た。Caneらは、1983年に放線菌抽出物にトリチウム標識したFPPを添加し、その生合成メカニズムに迫った(文献2)。その結果、以下のschemeに示す結果を得た。これよりFPPが酵素により環化されPentaleneneが得られることが明らかとなった。

Pentalenene_T1983

ペンタレネン合成酵素の単離、解析

続いてCaneらは、1994年にペンタレネン合成酵素を単離・精製し、その配列情報を明らかにした(文献4)。これにより、大腸菌を用いた異種発現が可能となり、酵素のアッセイを効率的に行なえるようになった。

2002年には、ペンタレネン合成酵素の結晶化に成功し、アミノ酸変異実験などにより、反応機構の詳細を詰めていった。

 

ペンタレネン生合成メカニズムの理論計算

2006年、Dean Tantilloによりシクロペンタレネンの生合成反応機構に関するDFT計算が行なわれた。シクロペンタレネンの生合成反応機構は当初、下図のように予想された。

Pentalenene_proposed

しかし、DFT計算により得られた反応機構は、次の通りである。当初予想されていた化合物3は、local minimumとではなく、中間体としては存在しないことが明らかとなった。その代わりに、5-6-4員環構造を持つ化合物7を経由する経路が見つかった。(下図の青色の経路)

Pentalenene_conformation1

 

また、コンフォメーションの違う、もうひとつの経路も得られている。こちらの経路では、ふたつのオレフィンにプロトンがトラップされるサンドウィッチ構造を遷移状態として反応が進行することが明らかとなった。

Pentalenene_two_pathway

図は、文献6より抜粋

どちらの経路もトリキナン骨格形成時に30 kcal/mol近いエネルギーを必要としており、室温条件化では反応はかなり遅いと考えられる。しかし、何 kcal/molまでが許容なのかについて厳密なルールはない。また、この遷移状態の安定化にペンタレネン合成酵素が関与している可能性が高いとTantilloらは結論づけた。

 

まとめ

ペンタレネンの生合成研究は、30年以上の年月をかけて行なわれて来た。その研究を追っていくと、科学技術の進歩を実感できる。Caneの1980年代の研究では、酵素の単離が出来ず、放線菌の抽出液に基質投与を行なっていた。1990年代に入ると酵素の単離・精製・遺伝子配列の決定、異種発現まで出来るようになった。さらに、2000年代には、酵素の結晶化に成功し、その活性部位に関しての考察まで行なえた。2006年には、Dean Tantilloが計算化学を駆使して、その反応メカニズムの詳細を明らかにした。

 

参考文献

  1. Haruo Seto, et al. J. Antibiot. 1980, 33, 92-93.
  2. Cane, D. E. et alJ. am. chem. soc. 1983, 105, 122-124. DOI: 10.1021/ja00339a026
  3. David E. Cane. et al. J. am. chem. soc. 1990, 112, 4513-4524. DOI: 10.1021/ja00167a059
  4. David E. Cane. et al. Biochemistry 1994, 33, 5846-5857.  DOI: 10.1021/bi00185a024
  5. David E. Cane. et alJ. am. chem. soc. 2002, 124, 7681-7689. DOI:10.1021/ja026058q
  6. Pradeep Gutta and Dean J. Tantillo, J. am. chem. soc. 2006, 128, 6172-6179. DOI: 10.1021/ja058031n
  7. Y.-J. Kim et al., Tetrahedron 2013 69, 7810-7816. DOI: 10.1016/j.tet.2013.05.095

 

ゼロ

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. テトラメチルアンモニウム (tetramethylammoniu…
  2. アザジラクチン あざじらくちん azadirachtin
  3. フタロシアニン phthalocyanine
  4. 虫歯とフッ素のお話① ~どうして歯磨きにフッ素が使われるの??~…
  5. カリオフィレン /caryophyllene
  6. シクロクラビン cycloclavine
  7. オリンピセン (olympicene)
  8. ゲラニオール

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 多孔性材料の動的核偏極化【生体分子の高感度MRI観測への一歩】
  2. 化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始
  3. 1,3-双極子付加環化反応 1,3-Dipolar Cycloaddition
  4. 揮発した有機化合物はどこへ?
  5. 不斉アリル位アルキル化反応を利用した有機合成
  6. それは夢から始まったーベンゼンの構造提唱から150年
  7. 有機化学を俯瞰する -有機化学の誕生から21世紀まで–【後編】
  8. ガラス器具を見積もりできるシステム導入:旭製作所
  9. クラーク・スティル W. Clark Still
  10. シランカップリング剤入門【終了】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

フェノール類を選択的に加水素分解する新触媒を開発:リグニンから芳香族炭化水素へ

第316回のスポットライトリサーチは、東京大学大学院工学系研究科 化学生命工学専攻(野崎研究室)・金…

【書籍】化学系学生にわかりやすい 平衡論・速度論

『化学系学生にわかりやすい 平衡論・速度論』(酒井 健一 著、コロナ社)という書籍をご紹介します。…

これからの理系の転職について考えてみた

Employability(エンプロイアビリティ)という言葉をご存じでしょうか。…

日本で始まる最先端半導体の開発 ~多くの素材メーカーが参画~

半導体の受託生産で世界最大手の台湾積体電路製造(TSMC)が茨城県つくば市に研究開発拠点を新設し、最…

「リチウムイオン電池用3D炭素電極の開発」–Caltech・Greer研より

久々のケムステ海外研究記です。第40回はカリフォルニア工科大学(Caltech)材料科学科のPhD課…

ペプシとヒドラゾンが作る枝分かれフッ素化合物

gem-ジフルオロシクロプロパンを原料としたbranch選択的なモノフルオロアルケン合成法が開発され…

【基礎からわかる/マイクロ波化学(株)ウェビナー】 マイクロ波の使い方セミナー 〜実験動画、実証設備、安全対策を公開〜

<内容>実験室では広く使われ、論文では興味を引く事例を目にすることが多いマイクロ波。興味…

配位子保護金属クラスターを用いた近赤外―可視光変換

第315回のスポットライトリサーチは、立教大学理学部・新堀佳紀 助教にお願いしました。近年エ…

Chem-Station Twitter

PAGE TOP