[スポンサーリンク]

天然物

ペンタレネン Pentalenene

[スポンサーリンク]

Pentalenene_structure

ペンタレネン(Pentalenene)は複数の放線菌(Streptomyces chromofuscus, S. griseochromogenes, S. baarnensis)により生産されているセスキテルペンである。グラム陽性菌、陰性菌、カビに対して活性を持つ抗生物質ペンタレノラクトン(Pentalenolactone)の生合成中間体である。1980年に瀬戸治男により単離された(文献1)。生合成の観点からは、特徴的なトリキナン骨格(triquinane structure)をどのように形成しているかについて様々な研究がなされて来た。(ポリシクロペンタノイドをポリキナンと称し、縮環数に応じてジキナン、トリキナンなどに分類される。)

 

ペンタレネンの生合成

ペンタレネンの生合成研究は、天然物界の大御所David Caneにより行なわれて来た。Caneらは、1983年に放線菌抽出物にトリチウム標識したFPPを添加し、その生合成メカニズムに迫った(文献2)。その結果、以下のschemeに示す結果を得た。これよりFPPが酵素により環化されPentaleneneが得られることが明らかとなった。

Pentalenene_T1983

ペンタレネン合成酵素の単離、解析

続いてCaneらは、1994年にペンタレネン合成酵素を単離・精製し、その配列情報を明らかにした(文献4)。これにより、大腸菌を用いた異種発現が可能となり、酵素のアッセイを効率的に行なえるようになった。

2002年には、ペンタレネン合成酵素の結晶化に成功し、アミノ酸変異実験などにより、反応機構の詳細を詰めていった。

 

ペンタレネン生合成メカニズムの理論計算

2006年、Dean Tantilloによりシクロペンタレネンの生合成反応機構に関するDFT計算が行なわれた。シクロペンタレネンの生合成反応機構は当初、下図のように予想された。

Pentalenene_proposed

しかし、DFT計算により得られた反応機構は、次の通りである。当初予想されていた化合物3は、local minimumとではなく、中間体としては存在しないことが明らかとなった。その代わりに、5-6-4員環構造を持つ化合物7を経由する経路が見つかった。(下図の青色の経路)

Pentalenene_conformation1

 

また、コンフォメーションの違う、もうひとつの経路も得られている。こちらの経路では、ふたつのオレフィンにプロトンがトラップされるサンドウィッチ構造を遷移状態として反応が進行することが明らかとなった。

Pentalenene_two_pathway

図は、文献6より抜粋

どちらの経路もトリキナン骨格形成時に30 kcal/mol近いエネルギーを必要としており、室温条件化では反応はかなり遅いと考えられる。しかし、何 kcal/molまでが許容なのかについて厳密なルールはない。また、この遷移状態の安定化にペンタレネン合成酵素が関与している可能性が高いとTantilloらは結論づけた。

 

まとめ

ペンタレネンの生合成研究は、30年以上の年月をかけて行なわれて来た。その研究を追っていくと、科学技術の進歩を実感できる。Caneの1980年代の研究では、酵素の単離が出来ず、放線菌の抽出液に基質投与を行なっていた。1990年代に入ると酵素の単離・精製・遺伝子配列の決定、異種発現まで出来るようになった。さらに、2000年代には、酵素の結晶化に成功し、その活性部位に関しての考察まで行なえた。2006年には、Dean Tantilloが計算化学を駆使して、その反応メカニズムの詳細を明らかにした。

 

参考文献

  1. Haruo Seto, et al. J. Antibiot. 1980, 33, 92-93.
  2. Cane, D. E. et alJ. am. chem. soc. 1983, 105, 122-124. DOI: 10.1021/ja00339a026
  3. David E. Cane. et al. J. am. chem. soc. 1990, 112, 4513-4524. DOI: 10.1021/ja00167a059
  4. David E. Cane. et al. Biochemistry 1994, 33, 5846-5857.  DOI: 10.1021/bi00185a024
  5. David E. Cane. et alJ. am. chem. soc. 2002, 124, 7681-7689. DOI:10.1021/ja026058q
  6. Pradeep Gutta and Dean J. Tantillo, J. am. chem. soc. 2006, 128, 6172-6179. DOI: 10.1021/ja058031n
  7. Y.-J. Kim et al., Tetrahedron 2013 69, 7810-7816. DOI: 10.1016/j.tet.2013.05.095

 

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. ディスコデルモライド /Discodermolide
  2. 亜鉛クロロフィル zinc chlorophyll
  3. フラーレン /Fullerene
  4. エチルマレイミド (N-ethylmaleimide)
  5. マツタケオール mushroom alcohol
  6. ペリプラノン
  7. シスプラチン しすぷらちん cisplatin
  8. アコニチン (aconitine)

注目情報

ピックアップ記事

  1. CO2を用いるアルキルハライドの遠隔位触媒的C-Hカルボキシル化
  2. 【書籍】「メタノールエコノミー」~CO2をエネルギーに変える逆転の発想~
  3. 書物から学ぶ有機化学 2
  4. 第102回―「有機薄膜エレクトロニクスと太陽電池の研究」Lynn Loo教授
  5. 第20回「転んだ方がベストと思える人生を」ー藤田 誠教授
  6. 米国もアトピー薬で警告 発がんで藤沢製品などに
  7. 秘密保持契約(NDA)
  8. タミフルの新規合成法・その4
  9. 化学企業のグローバル・トップ50
  10. 野々山 貴行 Takayuki NONOYAMA

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー