[スポンサーリンク]

天然物

ペンタレネン Pentalenene

[スポンサーリンク]

Pentalenene_structure

ペンタレネン(Pentalenene)は複数の放線菌(Streptomyces chromofuscus, S. griseochromogenes, S. baarnensis)により生産されているセスキテルペンである。グラム陽性菌、陰性菌、カビに対して活性を持つ抗生物質ペンタレノラクトン(Pentalenolactone)の生合成中間体である。1980年に瀬戸治男により単離された(文献1)。生合成の観点からは、特徴的なトリキナン骨格(triquinane structure)をどのように形成しているかについて様々な研究がなされて来た。(ポリシクロペンタノイドをポリキナンと称し、縮環数に応じてジキナン、トリキナンなどに分類される。)

 

ペンタレネンの生合成

ペンタレネンの生合成研究は、天然物界の大御所David Caneにより行なわれて来た。Caneらは、1983年に放線菌抽出物にトリチウム標識したFPPを添加し、その生合成メカニズムに迫った(文献2)。その結果、以下のschemeに示す結果を得た。これよりFPPが酵素により環化されPentaleneneが得られることが明らかとなった。

Pentalenene_T1983

ペンタレネン合成酵素の単離、解析

続いてCaneらは、1994年にペンタレネン合成酵素を単離・精製し、その配列情報を明らかにした(文献4)。これにより、大腸菌を用いた異種発現が可能となり、酵素のアッセイを効率的に行なえるようになった。

2002年には、ペンタレネン合成酵素の結晶化に成功し、アミノ酸変異実験などにより、反応機構の詳細を詰めていった。

 

ペンタレネン生合成メカニズムの理論計算

2006年、Dean Tantilloによりシクロペンタレネンの生合成反応機構に関するDFT計算が行なわれた。シクロペンタレネンの生合成反応機構は当初、下図のように予想された。

Pentalenene_proposed

しかし、DFT計算により得られた反応機構は、次の通りである。当初予想されていた化合物3は、local minimumとではなく、中間体としては存在しないことが明らかとなった。その代わりに、5-6-4員環構造を持つ化合物7を経由する経路が見つかった。(下図の青色の経路)

Pentalenene_conformation1

 

また、コンフォメーションの違う、もうひとつの経路も得られている。こちらの経路では、ふたつのオレフィンにプロトンがトラップされるサンドウィッチ構造を遷移状態として反応が進行することが明らかとなった。

Pentalenene_two_pathway

図は、文献6より抜粋

どちらの経路もトリキナン骨格形成時に30 kcal/mol近いエネルギーを必要としており、室温条件化では反応はかなり遅いと考えられる。しかし、何 kcal/molまでが許容なのかについて厳密なルールはない。また、この遷移状態の安定化にペンタレネン合成酵素が関与している可能性が高いとTantilloらは結論づけた。

 

まとめ

ペンタレネンの生合成研究は、30年以上の年月をかけて行なわれて来た。その研究を追っていくと、科学技術の進歩を実感できる。Caneの1980年代の研究では、酵素の単離が出来ず、放線菌の抽出液に基質投与を行なっていた。1990年代に入ると酵素の単離・精製・遺伝子配列の決定、異種発現まで出来るようになった。さらに、2000年代には、酵素の結晶化に成功し、その活性部位に関しての考察まで行なえた。2006年には、Dean Tantilloが計算化学を駆使して、その反応メカニズムの詳細を明らかにした。

 

参考文献

  1. Haruo Seto, et al. J. Antibiot. 1980, 33, 92-93.
  2. Cane, D. E. et alJ. am. chem. soc. 1983, 105, 122-124. DOI: 10.1021/ja00339a026
  3. David E. Cane. et al. J. am. chem. soc. 1990, 112, 4513-4524. DOI: 10.1021/ja00167a059
  4. David E. Cane. et al. Biochemistry 1994, 33, 5846-5857.  DOI: 10.1021/bi00185a024
  5. David E. Cane. et alJ. am. chem. soc. 2002, 124, 7681-7689. DOI:10.1021/ja026058q
  6. Pradeep Gutta and Dean J. Tantillo, J. am. chem. soc. 2006, 128, 6172-6179. DOI: 10.1021/ja058031n
  7. Y.-J. Kim et al., Tetrahedron 2013 69, 7810-7816. DOI: 10.1016/j.tet.2013.05.095

 

ゼロ

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. アブシジン酸(abscisic acid; ABA)
  2. サラシノール/Salacinol
  3. コエンザイムQ10 /coenzyme Q10
  4. スピノシン spinosyn
  5. フッ素ドープ酸化スズ (FTO)
  6. カプロラクタム (caprolactam)
  7. バイアグラ /viagra
  8. ヒストリオニコトキシン histrionicotoxin

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール化
  2. 天然物化学
  3. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発
  4. ヤンセン 新たな抗HIV薬の製造販売承認を取得
  5. CRISPR(クリスパー)
  6. ウーロン茶の中でも医薬品の化学合成が可能に
  7. 研究者のためのCG作成術③(設定編)
  8. 米ファイザー、コレステロール薬の開発中止
  9. エーザイ 抗がん剤「ハラヴェンR」日米欧で承認取得 
  10. アンリ・カガン Henri B. Kagan

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年11月
« 10月   12月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン・対面併設|進化する高分子材料 表面・界面制御 Advanced コース

開講期間●令和4年 2月  14日(月)、17日(木):基礎編●       21日(月)、…

ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮

第 360回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科 博士課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP