[スポンサーリンク]

天然物

ペンタレネン Pentalenene

[スポンサーリンク]

Pentalenene_structure

ペンタレネン(Pentalenene)は複数の放線菌(Streptomyces chromofuscus, S. griseochromogenes, S. baarnensis)により生産されているセスキテルペンである。グラム陽性菌、陰性菌、カビに対して活性を持つ抗生物質ペンタレノラクトン(Pentalenolactone)の生合成中間体である。1980年に瀬戸治男により単離された(文献1)。生合成の観点からは、特徴的なトリキナン骨格(triquinane structure)をどのように形成しているかについて様々な研究がなされて来た。(ポリシクロペンタノイドをポリキナンと称し、縮環数に応じてジキナン、トリキナンなどに分類される。)

 

ペンタレネンの生合成

ペンタレネンの生合成研究は、天然物界の大御所David Caneにより行なわれて来た。Caneらは、1983年に放線菌抽出物にトリチウム標識したFPPを添加し、その生合成メカニズムに迫った(文献2)。その結果、以下のschemeに示す結果を得た。これよりFPPが酵素により環化されPentaleneneが得られることが明らかとなった。

Pentalenene_T1983

ペンタレネン合成酵素の単離、解析

続いてCaneらは、1994年にペンタレネン合成酵素を単離・精製し、その配列情報を明らかにした(文献4)。これにより、大腸菌を用いた異種発現が可能となり、酵素のアッセイを効率的に行なえるようになった。

2002年には、ペンタレネン合成酵素の結晶化に成功し、アミノ酸変異実験などにより、反応機構の詳細を詰めていった。

 

ペンタレネン生合成メカニズムの理論計算

2006年、Dean Tantilloによりシクロペンタレネンの生合成反応機構に関するDFT計算が行なわれた。シクロペンタレネンの生合成反応機構は当初、下図のように予想された。

Pentalenene_proposed

しかし、DFT計算により得られた反応機構は、次の通りである。当初予想されていた化合物3は、local minimumとではなく、中間体としては存在しないことが明らかとなった。その代わりに、5-6-4員環構造を持つ化合物7を経由する経路が見つかった。(下図の青色の経路)

Pentalenene_conformation1

 

また、コンフォメーションの違う、もうひとつの経路も得られている。こちらの経路では、ふたつのオレフィンにプロトンがトラップされるサンドウィッチ構造を遷移状態として反応が進行することが明らかとなった。

Pentalenene_two_pathway

図は、文献6より抜粋

どちらの経路もトリキナン骨格形成時に30 kcal/mol近いエネルギーを必要としており、室温条件化では反応はかなり遅いと考えられる。しかし、何 kcal/molまでが許容なのかについて厳密なルールはない。また、この遷移状態の安定化にペンタレネン合成酵素が関与している可能性が高いとTantilloらは結論づけた。

 

まとめ

ペンタレネンの生合成研究は、30年以上の年月をかけて行なわれて来た。その研究を追っていくと、科学技術の進歩を実感できる。Caneの1980年代の研究では、酵素の単離が出来ず、放線菌の抽出液に基質投与を行なっていた。1990年代に入ると酵素の単離・精製・遺伝子配列の決定、異種発現まで出来るようになった。さらに、2000年代には、酵素の結晶化に成功し、その活性部位に関しての考察まで行なえた。2006年には、Dean Tantilloが計算化学を駆使して、その反応メカニズムの詳細を明らかにした。

 

参考文献

  1. Haruo Seto, et al. J. Antibiot. 1980, 33, 92-93.
  2. Cane, D. E. et alJ. am. chem. soc. 1983, 105, 122-124. DOI: 10.1021/ja00339a026
  3. David E. Cane. et al. J. am. chem. soc. 1990, 112, 4513-4524. DOI: 10.1021/ja00167a059
  4. David E. Cane. et al. Biochemistry 1994, 33, 5846-5857.  DOI: 10.1021/bi00185a024
  5. David E. Cane. et alJ. am. chem. soc. 2002, 124, 7681-7689. DOI:10.1021/ja026058q
  6. Pradeep Gutta and Dean J. Tantillo, J. am. chem. soc. 2006, 128, 6172-6179. DOI: 10.1021/ja058031n
  7. Y.-J. Kim et al., Tetrahedron 2013 69, 7810-7816. DOI: 10.1016/j.tet.2013.05.095

 

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. チエナマイシン /thienamycin
  2. フルエッギン Flueggine
  3. コルチスタチン /Cortistatin
  4. アスタキサンチン (astaxanthin)
  5. ノッド因子 (Nod factor)
  6. ヒノキチオール (hinokitiol)
  7. ヨードホルム (iodoform)
  8. アデノシン /adenosine

注目情報

ピックアップ記事

  1. フタロシアニン鉄(II) : Phthalocyanine Iron(II)
  2. 第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!
  3. ヴィンス・ロテロ Vincent M. Rotello
  4. 給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~
  5. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  6. ネイティブスピーカーも納得する技術英語表現
  7. 300分の1を狙い撃つ~カチオン性ロジウム触媒による高選択的[2+2+2]付加環化反応の開発
  8. 化学者のためのエレクトロニクス入門① ~電子回路の歴史編~
  9. 比色法の化学(前編)
  10. マイクロ波化学が挑むプラスチックのリサイクル

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

【産総研・触媒化学研究部門】新卒・既卒採用情報

触媒部門では、「個の力」でもある触媒化学を基盤としつつも、異分野に積極的に関わる…

触媒化学を基盤に展開される広範な研究

前回の記事でご紹介したとおり、触媒化学研究部門(触媒部門)では、触媒化学を基盤に…

「産総研・触媒化学研究部門」ってどんな研究所?

触媒化学融合研究センターの後継として、2025年に産総研内に設立された触媒化学研究部門は、「触媒化学…

Cell Press “Chem” 編集者 × 研究者トークセッション ~日本発のハイクオリティな化学研究を世界に~

ケムステでも以前取り上げた、Cell PressのChem。今回はChemの編集…

光励起で芳香族性を獲得する分子の構造ダイナミクスを解明!

第 654 回のスポットライトリサーチは、分子科学研究所 協奏分子システム研究セ…

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP