[スポンサーリンク]

元素

フッ素 Fluorine -水をはじく?歯磨き粉や樹脂への応用

[スポンサーリンク]

 猛毒の気体から単離されたフッ素。水や油をはじくテフロン樹脂に利用されているほか、医薬品の重要な置換基でも有り、多種多様な利用があります。

 

フッ素の基本物性データ

分類 ハロゲン
原子番号・原子量 (18.9984)
電子配置 2s22p5
密度 1.696kg/m3
融点  –219.62℃
沸点 –188.14℃
硬度
色・形状 淡黄色・気体
存在度 地球 950ppm、宇宙843ppm
クラーク数  0.03%(17位)
発見者 ジョセフ・アンリ・モアッサン(1886年)
主な同位体 19F(100%)
用途例 フッ素樹脂(テフロンなど)、歯磨き剤(NaF)、冷媒(フロン)、医薬品(有機フッ素化合物)
前後の元素 酸素ーフッ素ーネオン

単離が困難で反応性が高い元素

自然界には蛍石(フッ化カルシウム:CaF2)や氷晶石(Na3AlF3)などのフッ素化合物が存在します。このようなフッ素化合物は、シェーレらによっても発見されていましたが、フッ素字体の単離は非常に困難を極めました。その理由は、単体のフッ素が毒性が高く、非常に危険な物質であったためです。

2016-06-13_05-26-16

 

1886年にフランスの化学者モアッサンが、フッ化カリウム(KF)をフッ化水素(HF)に溶かし、それを電気分解することでようやくフッ素の単離に成功しました。フッ素は電気陰性度が元素の中で最も大きく、ヘリウムとネオン以外のすべての元素と反応する非常に反応性の高い元素です。

 

ジョセフ・アンリ・モアッサン

2016-06-13_05-27-34

1852–1907年。フランスの化学者。パリ大学教授。多くの化学者が挑戦し失敗したフッ素の単離に成功。しかし、その実験中に片目を失明した。この他、3500℃という高温まで加熱することができる炭素電極を用いたアーク式電気炉の開発者としても知られている。フッ素単離の功績により、1906年ノーベル化学賞を受賞した。

 

虫歯を予防するフッ素

フッ素(正確にはフッ化物。フッ素のナトリウム塩。フッ化ナトリウム)は現在売られているほとんどの歯磨き剤の中に入っています。虫歯予防、すなわち歯質と歯垢細菌に対して効果があるといわれているからです。歯の表面に作用し、虫歯菌の作る酸に溶けにくい抵抗性のある歯質にします。

また、虫歯の極初期では、フッ素が再石灰化を促進し、酸に溶けた部分のエナメル質を補修し、耐酸性を向上させます。

もっとも、フッ素は日常の食べ物にたくさん含まれています。特に日本食にはフッ素が豊富です。高濃度のフッ素は体に害があるため、食事とは別にフッ素を取ることはかえって体によくないという意見もあります。また食べたからといって虫歯になりにくいなんてことはありません。

フッ素をよく含む食品(これら以外にも多くの食品に含まれている)

フッ素をよく含む食品(これら以外にも多くの食品に含まれている)

 

 

水や汚れをはじくテフロンコーティング

テフロンは米国デュポン社の登録商標で、ポリテトラフルオロエチレン(フッ素樹脂の一種)です。構造的には、食品容器や放送用フィルムで使われているポリエチレン(エチレンが重合したもの)の水素が、すべてフッ素原子に置き換わった構造をしています。フッ素原子が隙間なく埋め尽くす構造が他の分子を寄せ付けないのです。また炭素とフッ素の原子間結合力が大きいため、相対的に相手分子とのくっつきやすさ(分子間力)が小さくなります。つまり、分子間力が小さいため滑りやすく、ものがくっつきません。それ以外にも熱に強い、耐腐食性、耐摩耗性があるなどさまざまな特徴があります。

テフロン加工のフライパンは焦げ付きにくく、水や汚れを弾くので洗うのも簡単です。それ以外にも、水を弾く傘、キャンプや建築用のテントなどにも、テフロン加工がなされています。

2016-06-13_05-48-01

医薬品にも含まれる

フッ素は医薬品にもよくみられる元素です。実に市販の医薬品の30%近くにフッ素がはいっており、大活躍。フッ素は水素と原子半径が近いにも関わらず、電気陰性度が全く異なり、かつ安定であるという性質をもっているため、医薬品候補化合物の改善に効果的です。

 

2016-06-13_06-00-44

フッ素を含む医薬品の代表例

 

フッ素に関するケムステ記事

関連書籍

[amazonjs asin=”4782707274″ locale=”JP” title=”フッ素化学入門2015″]

 

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 元素に恋して: マンガで出会う不思議なelementsの世界
  2. ランタノイド Lanthanoid
  3. 元素生活 完全版
  4. 元素名と中国語
  5. 原子量に捧げる詩
  6. 海底にレアアース資源!ランタノイドは太平洋の夢を見るか
  7. 112番元素が正式に周期表の仲間入り
  8. 日本発元素がついに周期表に!!「原子番号113番」の命名権が理研…

注目情報

ピックアップ記事

  1. クロロ(1,5-シクロオクタジエン)イリジウム(I) (ダイマー):Chloro(1,5-cyclooctadiene)iridium(I) Dimer
  2. フルエッギン Flueggine
  3. フィッツィンガー キノリン合成 Pfitzinger Quinoline Synthesis
  4. L-RAD:未活用の研究アイデアの有効利用に
  5. 第145回―「ランタニド・アクチニド化合物の合成と分光学研究」Christopher Cahill教授
  6. レーザー光で実現する新たな多結晶形成法
  7. 超原子結晶!TCNE!インターカレーション!!!
  8. Pixiv発!秀作化学イラスト集【Part 1】
  9. 第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します!
  10. アルファリポ酸 /α-lipoic acid

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その1

Tshozoです。今回はかなり限定した疾患とそれに対するお薬の開発の中身をまとめておこうと思いま…

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP