[スポンサーリンク]

天然物

アピオース apiose

[スポンサーリンク]

アピオースは、炭素数が5で、5員環を作る単糖のひとつです。植物細胞壁の成分として、アピオースは他の糖とは異なる特有の機能を持ちます。アピオースはペクチンと呼ばれる細胞壁多糖の側鎖に含まれ、ここにホウ酸が結合することで、植物の細胞壁が本来もつべき特性を与えています。

 

植物細胞壁におけるアピオースの機能

アピオースは細胞壁多糖のうちペクチン画分に含まれます。要点をかいつまむと、植物の細胞壁は、セルロースの鉄筋に、ペクチンのコンクリートが充填されたような構造をしています。ガラクツロン酸を主鎖にしたペクチンには何種類かの側鎖があり、このうち植物の生育に不可欠ないくつかの側鎖の、もっとも根元部分にアピオースはあります。果物ジャムの粘性もこのペクチンによるものであり、ペクチンはゾルゲル変化することで細胞壁の特性を決めています。

アピオースはホウ酸を介してペクチン多糖を架橋します。この役割は、細胞壁の分画と糖組成分析・ホウ素11核磁気共鳴・化学処理と質量分析スペクトルの結果[1]から示されており、アピオースは細胞壁のゆるみを調節するかなめになる糖であると考えられています。ホウ素は植物の必須元素として知られ、土壌からの吸収が損なわれると植物は生育できません。ホウ素の機能は、唯一、細胞壁の成分としてペクチンを架橋する機能だけが知られています[2]。シダ植物[3]から、わたしたちが身近によく見る種子植物まで、維管束を持ったすべての植物の細胞壁に、アピオースは共通して含まれる成分です。

 

GREEN5

ペクチンどうしを結びつける

 

植物におけるアピオースの生合成

植物において、このアピオースの生合成はどうなっているのかと言うと、ヌクレオチドが結合し活性化されたグルクロン酸を基質にして、酵素の触媒のもと行われます[4]。このアピオース合成酵素の機能を、ウイルスを用いた遺伝子操作で抑制すると、細胞壁構造の乱れが観察され生育が悪くなることから、アピオースはやはり植物の成長に必要な成分のようです[5]。ガラス器具内で、グルクロン酸のフッ化糖を阻害剤とした研究から、アピオース合成酵素は次のように反応機構が提案されています[6]。

GREEN2apiose

生合成 / 論文[6]より

 

アピオースは珍しい炭素骨格を持った分枝糖のひとつ

アピオースは炭素骨格が枝分かれした珍しい分枝糖のひとつです。天然に産する分枝糖は、ストレプトマイシンの中にも組み込まれているストレプトースと、木本植物マンサク(Hamamelis sp.)のなかまから単離され機能未知のハマメロースなど数例に限られ、アピオースの他にわずかしか知られていません。

GREEN3apiose.png

分枝糖の例

 

アピオースの化学合成

アピオースは分枝糖の代表格のひとつであるわけですが、化学合成の場合、例えばアラビノースに始まる方法が報告されています[7]。この方法では、アルデヒドを保護して、炭素骨格の変換を行っています。

GREEN1apiose

化学合成 / 論文[7]より

 

配糖体にも含まれるアピオース

アピオース自体は、細胞壁多糖だけにしか見られないのかというと、セロリ(Apium graveolens )やピーマン(Capsicum annuum )[8]をはじめいくつかの植物で、配糖体としても報告されています。そもそもアピオース(apiose)の命名自体、セロリの学名に由来したものです。

GREEN4apiose.png

天然に知られるフラボノイド配糖体 / アピオースの機能は不明

 

参考文献

[1] アピオース残基を介してホウ酸は2本のペクチン鎖を共有結合で架橋する

a)”Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester  Bonds in Higher  Plant Cell Walls” Masaru Kobayashi et al. Plant Physiology 1996 DOI: ?10.?1104/?pp.?110.?3.?1017

b) “Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp” Tadashi Ishii et al. Carbohydr. Res. 1996 DOI: 10.1016/0008-6215(96)00010-9

c) “Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester” Malcolm A. O’Neill et al. J. Biol. Chem. 1996 DOI: 10.1074/jbc.271.37.22923

d) “The Plant Cell Wall Polysaccharide Rhamnogalacturonan II Self-assembles into a Covalently Cross-linked Dimer” Tadashi Ishii J. Biol. Chem. 1999 DOI: 10.1074/jbc.274.19.13098

[2] フコース合成酵素欠損株を用いてホウ酸が細胞壁架橋を介して植物の成長に必要なことを証明

“Requirement of Borate Cross-Linking of Cell Wall Rhamnogalacturonan II for Arabidopsis Growth” Malcolm A. O’Neill et al. Science 2001 DOI: 10.1126/science.1062319

[3] ホウ酸結合ペクチンはコケ植物から進化して広まった

“Occurrence of the Primary Cell Wall Polysaccharide Rhamnogalacturonan II in Pteridophytes, Lycophytes, and Bryophytes. Implications for the Evolution of Vascular Plants” Toshiro Matsunaga et al. Plant Physiology 2004 DOI: 10.1104/pp.103.030072

[4] シロイヌナズナでアピオース生合成酵素を同定

“The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis” Michael Molhoj et al. Plant J. 2003 DOI: 10.1046/j.1365-313X.2003.01841.x

[5] アピオース合成酵素が植物細胞壁に必要なことを証明

“Depletion of UDP-d-apiose/UDP-d-xylose Synthases Results in Rhamnogalacturonan-II Deficiency, Cell Wall Thickening, and Cell Death in Higher Plants” Joon-Woo Ahn et al. J. Biol. Chem.  2006 DOI: 10.1074/jbc.M512403200

[6] アピオース合成酵素の阻害剤としてグルクロン酸のフッ化物を報告

“A ?uoro analogue of UDP-a- D -glucuronic acid is an inhibitor of UDP-a- D -apiose/UDP-a- D -xylose synthase” Sei-hyun Choi et al. Chem. Comn. 2011 DOI:  10.1039/c1cc13140k

[7] 効率よくアピオースを化学合成する方法

“An efficient and versatile synthesis of apiose and some C-1-aldehyde-and/or 2, 3-O-protected derivatives” Miroslav Koos et al. Tetra. Lett. 2002 DOI: 10.1016/S0040-4039(02)01084-5

[8] 防虫効果のあるアピオース化合物をピーマンから単離

“Ovipositional Deterrent in the Sweet Pepper, Capsicum annuum, at the Mature Stage against Liriomyza trifolii” Takehiro Kashiwagi et al. Biosci. Biotechnol. Biochem. 2005 DOI: 10.1271/bbb.69.1831 

 

 

参考ウェブサイト

 

関連書籍

[amazonjs asin=”4762230405″ locale=”JP” title=”植物の生化学・分子生物学”][amazonjs asin=”4526061646″ locale=”JP” title=”糖鎖のはなし (SCIENCE AND TECHNOLOGY)”]

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 虫歯とフッ素のお話① ~どうして歯磨きにフッ素が使われるの??~…
  2. ITO 酸化インジウム・スズ
  3. ヒストリオニコトキシン histrionicotoxin
  4. ジフェニルオクタテトラエン (1,8-diphenyl-1,3,…
  5. タミフル(オセルタミビル) tamiflu (oseltamiv…
  6. ポリアクリル酸ナトリウム Sodium polyacrylate…
  7. ペンタシクロアナモキシ酸 pentacycloanamoxic…
  8. ディスコデルモライド /Discodermolide

注目情報

ピックアップ記事

  1. 第93回日本化学会付設展示会ケムステキャンペーン!Part II
  2. 有機合成化学協会誌2018年9月号:キラルバナジウム触媒・ナフタレン多量体・バイオインスパイアード物質変換・エラジタンニン・モルヒナン骨格・ドナー・アクセプター置換シクロプロパン・フッ素化多環式芳香族炭化水素
  3. 東京化成工業がケムステVシンポに協賛しました
  4. 赤外光で分子の結合を切る!
  5. 大学院生のつぶやき:UCEEネット、ご存知ですか?
  6. 【11/20~22】第41回メディシナルケミストリーシンポジウム@京都
  7. リン–リン単結合を有する化合物のアルケンに対する1,2-付加反応
  8. 高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。
  9. 239th ACS National Meeting に行ってきた
  10. えっ!そうなの?! 私たちを包み込む化学物質

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP