[スポンサーリンク]

天然物

アピオース apiose

[スポンサーリンク]

アピオースは、炭素数が5で、5員環を作る単糖のひとつです。植物細胞壁の成分として、アピオースは他の糖とは異なる特有の機能を持ちます。アピオースはペクチンと呼ばれる細胞壁多糖の側鎖に含まれ、ここにホウ酸が結合することで、植物の細胞壁が本来もつべき特性を与えています。

 

植物細胞壁におけるアピオースの機能

アピオースは細胞壁多糖のうちペクチン画分に含まれます。要点をかいつまむと、植物の細胞壁は、セルロースの鉄筋に、ペクチンのコンクリートが充填されたような構造をしています。ガラクツロン酸を主鎖にしたペクチンには何種類かの側鎖があり、このうち植物の生育に不可欠ないくつかの側鎖の、もっとも根元部分にアピオースはあります。果物ジャムの粘性もこのペクチンによるものであり、ペクチンはゾルゲル変化することで細胞壁の特性を決めています。

アピオースはホウ酸を介してペクチン多糖を架橋します。この役割は、細胞壁の分画と糖組成分析・ホウ素11核磁気共鳴・化学処理と質量分析スペクトルの結果[1]から示されており、アピオースは細胞壁のゆるみを調節するかなめになる糖であると考えられています。ホウ素は植物の必須元素として知られ、土壌からの吸収が損なわれると植物は生育できません。ホウ素の機能は、唯一、細胞壁の成分としてペクチンを架橋する機能だけが知られています[2]。シダ植物[3]から、わたしたちが身近によく見る種子植物まで、維管束を持ったすべての植物の細胞壁に、アピオースは共通して含まれる成分です。

 

GREEN5

ペクチンどうしを結びつける

 

植物におけるアピオースの生合成

植物において、このアピオースの生合成はどうなっているのかと言うと、ヌクレオチドが結合し活性化されたグルクロン酸を基質にして、酵素の触媒のもと行われます[4]。このアピオース合成酵素の機能を、ウイルスを用いた遺伝子操作で抑制すると、細胞壁構造の乱れが観察され生育が悪くなることから、アピオースはやはり植物の成長に必要な成分のようです[5]。ガラス器具内で、グルクロン酸のフッ化糖を阻害剤とした研究から、アピオース合成酵素は次のように反応機構が提案されています[6]。

GREEN2apiose

生合成 / 論文[6]より

 

アピオースは珍しい炭素骨格を持った分枝糖のひとつ

アピオースは炭素骨格が枝分かれした珍しい分枝糖のひとつです。天然に産する分枝糖は、ストレプトマイシンの中にも組み込まれているストレプトースと、木本植物マンサク(Hamamelis sp.)のなかまから単離され機能未知のハマメロースなど数例に限られ、アピオースの他にわずかしか知られていません。

GREEN3apiose.png

分枝糖の例

 

アピオースの化学合成

アピオースは分枝糖の代表格のひとつであるわけですが、化学合成の場合、例えばアラビノースに始まる方法が報告されています[7]。この方法では、アルデヒドを保護して、炭素骨格の変換を行っています。

GREEN1apiose

化学合成 / 論文[7]より

 

配糖体にも含まれるアピオース

アピオース自体は、細胞壁多糖だけにしか見られないのかというと、セロリ(Apium graveolens )やピーマン(Capsicum annuum )[8]をはじめいくつかの植物で、配糖体としても報告されています。そもそもアピオース(apiose)の命名自体、セロリの学名に由来したものです。

GREEN4apiose.png

天然に知られるフラボノイド配糖体 / アピオースの機能は不明

 

参考文献

[1] アピオース残基を介してホウ酸は2本のペクチン鎖を共有結合で架橋する

a)”Two Chains of Rhamnogalacturonan II Are Cross-Linked by Borate-Diol Ester  Bonds in Higher  Plant Cell Walls” Masaru Kobayashi et al. Plant Physiology 1996 DOI: ?10.?1104/?pp.?110.?3.?1017

b) “Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp” Tadashi Ishii et al. Carbohydr. Res. 1996 DOI: 10.1016/0008-6215(96)00010-9

c) “Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester” Malcolm A. O’Neill et al. J. Biol. Chem. 1996 DOI: 10.1074/jbc.271.37.22923

d) “The Plant Cell Wall Polysaccharide Rhamnogalacturonan II Self-assembles into a Covalently Cross-linked Dimer” Tadashi Ishii J. Biol. Chem. 1999 DOI: 10.1074/jbc.274.19.13098

[2] フコース合成酵素欠損株を用いてホウ酸が細胞壁架橋を介して植物の成長に必要なことを証明

“Requirement of Borate Cross-Linking of Cell Wall Rhamnogalacturonan II for Arabidopsis Growth” Malcolm A. O’Neill et al. Science 2001 DOI: 10.1126/science.1062319

[3] ホウ酸結合ペクチンはコケ植物から進化して広まった

“Occurrence of the Primary Cell Wall Polysaccharide Rhamnogalacturonan II in Pteridophytes, Lycophytes, and Bryophytes. Implications for the Evolution of Vascular Plants” Toshiro Matsunaga et al. Plant Physiology 2004 DOI: 10.1104/pp.103.030072

[4] シロイヌナズナでアピオース生合成酵素を同定

“The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis” Michael Molhoj et al. Plant J. 2003 DOI: 10.1046/j.1365-313X.2003.01841.x

[5] アピオース合成酵素が植物細胞壁に必要なことを証明

“Depletion of UDP-d-apiose/UDP-d-xylose Synthases Results in Rhamnogalacturonan-II Deficiency, Cell Wall Thickening, and Cell Death in Higher Plants” Joon-Woo Ahn et al. J. Biol. Chem.  2006 DOI: 10.1074/jbc.M512403200

[6] アピオース合成酵素の阻害剤としてグルクロン酸のフッ化物を報告

“A ?uoro analogue of UDP-a- D -glucuronic acid is an inhibitor of UDP-a- D -apiose/UDP-a- D -xylose synthase” Sei-hyun Choi et al. Chem. Comn. 2011 DOI:  10.1039/c1cc13140k

[7] 効率よくアピオースを化学合成する方法

“An efficient and versatile synthesis of apiose and some C-1-aldehyde-and/or 2, 3-O-protected derivatives” Miroslav Koos et al. Tetra. Lett. 2002 DOI: 10.1016/S0040-4039(02)01084-5

[8] 防虫効果のあるアピオース化合物をピーマンから単離

“Ovipositional Deterrent in the Sweet Pepper, Capsicum annuum, at the Mature Stage against Liriomyza trifolii” Takehiro Kashiwagi et al. Biosci. Biotechnol. Biochem. 2005 DOI: 10.1271/bbb.69.1831 

 

 

参考ウェブサイト

 

関連書籍

[amazonjs asin=”4762230405″ locale=”JP” title=”植物の生化学・分子生物学”][amazonjs asin=”4526061646″ locale=”JP” title=”糖鎖のはなし (SCIENCE AND TECHNOLOGY)”]

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. サリチル酸 (salicylic acid)
  2. アルファリポ酸 /α-lipoic acid
  3. 水 (water, dihydrogen monoxide)
  4. リコペン / Lycopene
  5. グルタミン酸 / Glutamic Acid
  6. ルテイン / lutein
  7. ボルテゾミブ (bortezomib)
  8. スピノシン Spinosyn

注目情報

ピックアップ記事

  1. ヘキサメチレンテトラミン
  2. 第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授
  3. アステラス製薬、過活動膀胱治療剤「ベシケア錠」製造販売承認取得
  4. ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜
  5. 2023年から始めるマテリアルズ・インフォマティクスの進め方 〜<期間限定>MIスターティングパッケージ企画もご紹介〜
  6. フェノールのC–O結合をぶった切る
  7. 第四回Vプレミアレクチャー「金属錯体を利用した光化学アップコンバージョン」を開催します!
  8. アミジルラジカルで遠隔位C(sp3)-H結合を切断する
  9. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人に聞く
  10. 「海外PIとして引率する大気化学研究室」ーカリフォルニア大学アーバイン校より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP