[スポンサーリンク]

odos 有機反応データベース

可視光酸化還元触媒 Visible Light Photoredox Catalyst

 

概要

ルテニウム(II)ポリピリジル錯体、イリジウム(III)フェニルピリジル錯体などは、可視光(λ=400-700nm)照射下に光酸化還元触媒(Photoredox Catalyst)として機能する。

強力な紫外線(UV)照射装置を使わずに、穏和に反応を進行させられるため、副反応の抑制が期待できる。また操作も簡便で、環境にも優しいクリーンな反応形式の実現も見込める。

有機合成領域ではもちろん、光をエネルギー源として活用するという技術的観点からも注目を集めている触媒系である。

基本文献

<Ru(bpy)32+>

<Ir(ppy)2(dtb-bpy)+>

  • Bernhard, S.; Malliaras, G. G. et al. J. Am. Chem. Soc. 2004, 126, 2763. DOI: 10.1021/ja0345221

<Review of Application to Organic Synthesis>

 

反応機構

photoredox_cat_2.gif

(Collect. Czech. Chem. Commun. 2011, 76, 859より引用・改変)

Ru(bpy)32+について、パラメータとともに上図に記しておく (vs. SCE)。
(1) 基底状態から可視光吸収して励起
(2) 項間交差(ISC)により三重項励起状態(3MLCT)へ移行
(3)(3′) 犠牲酸化or還元剤が存在すると消光(quenching)され、活性酸化種(Ru3+)or還元種(Ru+)が生じる。
(4) 活性酸化/還元種が反応を促進させ、基底状態に戻る。

つまり、用いる基質および反応剤次第で、酸化触媒としても還元触媒としても振る舞うことができる。

配位子の電子状態を変えてやることで、酸化還元電位の精密な調節も可能である。

反応例

光酸化還元触媒と有機分子触媒の協働[1]

photoredox_macmillan_1.gif

LipitorのLate-Stageトリフルオロメチル化[2]

photoredox_cat_3.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

  1. Nicewicz, D. A.; MacMillan, D. A. Science 2008, 322, 77. doi:10.1126/science.1161976
  2.  Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224. doi:10.1038/nature10647
    <Other Representative Report in Organic Synthesis>
  • Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886. doi:10.1021/ja805387f
  • Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2011, 3, 140. doi:10.1038/nchem.949
  • Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951. DOI: 10.1002/anie.201002992
  • McNally, A.; Prier, C. K.; MacMillan, D. W. C Science 2011, 334, 1114. DOI:10.1126/science.1213920

 

関連反応

 

関連書籍

 

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ヴィドマン・ストーマー シンノリン合成 Widman-Stoer…
  2. アセト酢酸エステル/マロン酸エステル合成 Acetoacetic…
  3. ウィッティヒ転位 Wittig Rearrangement
  4. アフマトヴィッチ反応 Achmatowicz Reaction
  5. 交差アルドール反応 Cross Aldol Reaction
  6. アマドリ転位 Amadori Rearrangement
  7. ハリース オゾン分解 Harries Ozonolysis
  8. ジョンソン・クライゼン転位 Johnson-Claisen Re…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 自在に分解できるプラスチック:ポリフタルアルデヒド
  2. マイケル付加 Michael Addition
  3. 【速報】2018年ノーベル化学賞は「進化分子工学研究への貢献」に!
  4. イオンの出入りを制御するキャップ付き分子容器の開発
  5. バンバーガー転位 Bamberger Rearrangement
  6. チャールズ・クリスギ Charles T. Kresge
  7. 電子学術情報の利活用
  8. 肺がん治療薬イレッサ「使用制限の必要なし」 厚労省検討会
  9. 光触媒による水素生成効率が3%に
  10. プロペランの真ん中

関連商品

注目情報

注目情報

最新記事

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

PAGE TOP