[スポンサーリンク]

N

N末端選択的タンパク質修飾反応 N-Terminus Selective Protein Modification

[スポンサーリンク]

N末端はタンパク鎖の中で1箇所しか存在しないため、これを標的とする修飾反応は必然的に高い位置・化学選択的を実現でき、均質な修飾体を与える事が出来る。また、修飾に伴う高次構造への影響も少ない。加えておよそ80%のタンパク質においては、N末端がタンパク表面に露出している。このため活用可能機会も多くなる。

しかしながら多くの場合、適用可能なアミノ酸種に制限があったり、結合が不安定であったりなどの問題もある。応用目的に照らし合わせて、適切な修飾法を選ぶことが重要となる。

基本文献

<Review>
<Chemist’s Guide>

反応例

大きく分けて以下のとおり分類される。

1)pH制御による手法

N末端アミノ基とリジン側鎖アミノ基は生理的条件下でともにプロトン化されているが、カルボニルの誘起効果のためそのpKa値が異なる[1]。このため、溶媒を適切なpHに設定して反応を行なうことで、これらを区別してN末端選択的な修飾が行なえる。アシル化、還元的アミノ化[2]、アジド転移[3]、ケテン付加[4]などが報告されている。末端のアミノ酸種を選ばずおこなえるのが利点。

2)アミノ酸側鎖を関与させる手法

N末端のCys, Ser, Thr, Trpなどは側鎖の巻き込みを介した環化反応、もしくは構造特異的反応に附すことができる。このため N末Cysについては自然界にほとんど存在しないため、多くは遺伝子操作技術によって導入する必要がある。

Cys: Native Chemical Ligationについては別項を参照。アルデヒドとのチアゾリジン形成法[5]は酸性pHと過剰量の試薬が必要であり、結合の可逆性が問題となる。この観点はo-B(OH)2-benzaldehydeの使用で解決出来る[6]。2-シアノベンゾチアゾール(CBT)との反応も、普通のCys側鎖との結合が可逆となるため、N末端選択的に進行する[7]。

Trp: Pictet-Spengler環化形式で末端選択的反応が進行する[8]。

Ser/Thr:Cysと類似の形式でオキサゾリジン型修飾が行えるものの、加水分解耐性が低いという問題がある。このため、NaIO4酸化などによってアルデヒドを露出させ、オキシムリゲーションなどの足がかりにする方法が一般的に用いられる[9]。ただし、NaIO4による他残基の酸化的損傷には注意が必要。

3)N末酸化によるカルボニルの露出→オキシム/ヒドラゾンリゲーション

Ser/Thrに限定せずN末端に活性カルボニルを露出させる方法として、アルデヒド試薬によるトランスアミネーション反応が活用されている。ピリドキサール-5’-リン酸(PLP)[10]やRapoport Salt[11]がこの目的にはよく用いられ、またNaIO4酸化よりも穏和である。ただし、特定のアミノ酸配列(AKT配列)が収率向上の為には重要である。オキシム/ヒドラゾンはそれぞれ加水分解に対する安定性に差があるので、留意する必要がある[12]。

4)その他の化学的手法

イミダゾリジノン形成法[13]、Proを標的とする酸化的修飾法[14]が知られている。前者の方法は結合に可逆性がある。後者の方法では、unpaird Cysとも反応しうるので予めジスルフィドとして保護しておく必要がある。

5) 酵素的手法

穏和な生体適合条件で行えることが最大の特徴。

Sortase A(SrtA)を用いる方法[15]:もっともよく使われる手法の一つ。LPXTG配列を認識し、オリゴGly配列とペプチド交換を起こす酵素反応を活用する。反応は可逆であり、酵素の接近しやすさによっても変換効率は変わりうる。

N-ミリストイルトランスフェラーゼ(NMT)を用いる手法[16]:N末にGXXXS/T(K)配列を持つペプチドを認識し、ミリスチン酸を付加させる酵素反応を活用する方法。生体共役反応への実用には、末端にアジドもしくはアルキンをもつカルボン酸を縮合させる形式を用いる。

Subtiligaseを用いる手法[17]:プロテアーゼSubtilisinの変異導入によりリガーゼとした酵素を用いる。N末端選択的な修飾が可能。

Butelase 1を用いる手法[18]:SrtAと同じく可逆であるため、反応剤は過剰量必要となっていたが、チオエステル基質を用いることで問題が解決されることが分かっている。

参考文献

  1. Sereda, T. J.;  Mant, C. T.; Quinn, A. M.; Hodges, R. S. J. Chromatogr. 1993, 646, 17. doi:10.1016/S0021-9673(99)87003-4
  2. Chen, D.; Disotuar, M. M.; Xiong, X.; Wang, Y.; Chou, D. H.-C. Chem. Sci. 2017, 8, 2717. doi:10.1039/C6SC04744K
  3. Schoffelen, S.; van Eldijk, M. B.; Rooijakkers, B.; Raijmakers, R.; Heck, J. R.; van Hest, J. C. M. Chem. Sci. 2011, 2, 701. doi:10.1039/C0SC00562B
  4. Chan, A. O.-Y.; Ho, C.-M.; Chong, H.-C.; Leung, Y.-C.; Huang, J.-S.;  Wong, M.-K.; Che, C.-M. J. Am. Chem. Soc. 2012, 134, 2589. DOI: 10.1021/ja208009r
  5. Zhang, L.; Tam, J. P. Anal. Biochem. 1996, 233, 87. DOI: 10.1006/abio.1996.0011
  6. (a) Bandyopadhyay, A.; Cambray, S.; Gao, J. Chem. Sci. 2016, 7, 4589. doi:10.1039/C6SC00172F (b) Faustino, H.; Silva, M. J. S. A.; Veiros, L. F.; Bernardes, G. J. L.; Gois, P. M. P. Chem. Sci. 2016, 7, 5052. doi:10.1039/C6SC01520D
  7. Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J. Angew. Chem. Int. Ed. Engl. 2009, 48, 9658. DOI: 10.1002/anie.200903627
  8. Li, X.; Zhang, L.; Hall, S. E.; Tam, J. P. Tetrahedron Lett. 2000, 41, 4069. doi:10.1016/S0040-4039(00)00592-X
  9. (a) Geoghegan, K. F.; Stroh, J. G. Bioconjugate Chem. 1992, 3, 138. DOI: 10.1021/bc00014a008  (b) Chen, J. K.; Lane, W. S.; Brauer, A. W.; Tanaka, A.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 12591. DOI: 10.1021/ja00079a051
  10. (a) Snell, E. E. J. Am. Chem. Soc. 1945, 67, 194. DOI: 10.1021/ja01218a013 (b) Dixon, H. B. F.; Fields, R. Methods Enzymol. 1972, 25, 409. doi: 10.1016/S0076-6879(72)25036-4 (c) Gilmore, J. M.; Scheck, R. A.; Esser-Kahn, A. P.; Joshi, N. S.; Francis, M. B. Angew. Chem. Int. Ed. Engl. 2006, 45, 5307. DOI: 10.1002/anie.200600368 (d) Witus, L. S.; Moore, T.; Thuronyi, B. W.; Esser-Kahn, A. P.; Scheck, R. A.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2010, 132, 16812. DOI: 10.1021/ja105429n
  11.  (a) Witus, L. S.; Netirojjanakul, C.; Palla, K. S.; Muehl, E. M.; Weng, C.-H.; Iavarone, A. T.; Francis, M. B. J. Am. Chem. Soc. 2013, 135, 17223. DOI: 10.1021/ja408868a (b) Palla, K. S.; Witus, L. S.; Mackenzie, K. J.; Netirojjanakul, C.; Francis, M. B. J. Am. Chem. Soc. 2015, 137, 1123. DOI: 10.1021/ja509955n
  12. Kalia, J.; Raines, R. T. Angew. Chem. Int. Ed. 2008, 47, 7523. DOI: 10.1002/anie.200802651
  13. MacDonald, J. I.; Munch, H. K.; Moore, T.; Francis, M. B. Nat. Chem. Biol. 2015, 11, 326. doi:10.1038/nchembio.1792
  14. Obermeyer, A.; Jarman, J. B.; Francis, M. B. J. Am. Chem. Soc. 2014, 136, 9572. DOI: 10.1021/ja500728c
  15. (a) Antos, J. M.; Chew, G.-L.; Guimaraes, C. P.; Yoder, N. C.; Grotenbreg, G. M.; Popp, M. W.-L.; Ploegh, H. L. J. Am. Chem. Soc. 2009, 131, 10800. DOI: 10.1021/ja902681k (b) Williamson, D. J.; Fascione, M. A.; Webb, M. E.; Turnbull, W. B. Angew. Chem. Int. Ed. Engl. 2012, 51, 9377. DOI: 10.1002/anie.201204538 (c) Theile, C. S.;  Witte, M. D.; Blom, A. E. M.; Kundrat, L.; Ploegh, H. L.; Guimaraes, C. P. Nat. Protoc. 2013, 8, 1800. doi:10.1038/nprot.2013.102
  16. (a) Hang, H. C.; Geutjes, E.-J.; Grotenbreg, G.; Pollington, A. M.; Bijlmakers, M. J.; Ploegh, H. L. J. Am. Chem. Soc. 2007, 129,  2744. DOI: 10.1021/ja0685001 (b) Charron, G.; Zhang, M. M.; Yount, J. S.; Wilson, J.; Raghavan, A. S.; Shamir, E.; Hang, H. C. J. Am. Chem. Soc. 2009, 131, 4967. DOI: 10.1021/ja810122f (c) Heal, W. P.; Wright, M. H.; Thinon, E.; Tate, E. W. Nat. Protoc. 2012, 7, 105. doi:10.1038/nprot.2011.425
  17. Abrahmsen, L.; Tom, J.; Burnier, J.; Butcher, K. A.; Kossiakoff, A.;  Wells, J. A. Biochemistry 1991, 30, 4151. DOI: 10.1021/bi00231a007
  18. (a) Nguyen, G. K. T.; Wang, S.; Qiu, Y.; Hemu, X.; Lian, Y.; Tam, J. P. Nat. Chem. Biol. 2014, 10, 732. doi:10.1038/nchembio.1586 (b) Nguyen, G. K.T .; Cao, Y.; Wang, W.; Liu, C. F.; Tam, J. P. Angew. Chem. Int. Ed. Engl. 2015, 54, 15694. DOI: 10.1002/ange.201506810

関連書籍

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ボイランド・シムズ酸化 Boyland-Sims Oxidati…
  2. クネーフェナーゲル縮合 Knoevenagel Condensa…
  3. スティーヴンス転位 Stevens Rearrangement
  4. ヒュスゲン環化付加 Huisgen Cycloaddition
  5. ダフ反応 Duff Reaction
  6. ジョンソン オレフィン合成 Johnson Olefinatio…
  7. クレーンケ ピリジン合成 Kröhnke Pyridine Sy…
  8. ヨードラクトン化反応 Iodolactonization

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光学活性ジペプチドホスフィン触媒を用いたイミンとアレン酸エステルの高エナンチオ選択的 [3+2] 環化反応
  2. オゾンホールのさらなる縮小を確認 – アメリカ海洋大気庁発表
  3. JCRファーマとはどんな会社?
  4. グルタミン酸 / Glutamic Acid
  5. 親子で楽しめる化学映像集 その2
  6. メタンハイドレートの化学
  7. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線
  8. Pubmed, ACS検索
  9. YMC-DispoPackAT 「ケムステを見た!!」 30%OFFキャンペーン
  10. 相次ぐ”業務用洗剤”による事故

関連商品

注目情報

注目情報

最新記事

Carl Boschの人生 その6

Tshozoです。安価で活性の高い触媒を見出した前回のつづき、早速いきます。(2)産業界との連携…

第80回―「グリーンな変換を実現する有機金属触媒」David Milstein教授

第80回の海外化学者インタビューは、デヴィッド・ミルスタイン教授です。ワイツマン化学研究所の有機化学…

自己修復性高分子研究を異種架橋高分子の革新的接着に展開

第257回のスポットライトリサーチは、東京工業大学 大学院物質理工学院・鶴岡あゆ子さんにお願いしまし…

コロナウイルス関連記事 まとめ

新型コロナウイルスの影響で、キャンパスが閉鎖となる大学も増えてきていますね。私の周りでは、コロナウイ…

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

Chem-Station Twitter

PAGE TOP