[スポンサーリンク]

一般的な話題

セライトのちょっとマニアックな話

[スポンサーリンク]

 

セライト (Celite®は Imerys Minerals, Inc. の登録商標であり、珪藻土をベースにした濾過助剤です。有機合成研究室にはだいたい常備してあり、お世話になっている方も多いでしょう。主にパラジウム炭素などの金属 (不均一系触媒) を濾別したり、分液などで生じたエマルジョンを除去したりするのに使います。主な使い方や詰め方などはこちらのサイトにまとめられています。本記事では、セライトそのものにスポットを当ててちょっとだけマニア向け?なアレコレを綴りたいと思います。

そもそも珪藻土とは

珪藻(ケイソウ)は不等毛植物に含まれる単細胞性の藻類の一群を指し、ケイ酸 (シリカ、SiO2) 質の被殻に覆われているのが特徴の生物群です。それらの死骸の有機物が分解され、ケイ酸質だけが残って堆積したものが珪藻土です。図1に見て取れるように、珪藻には無数の細孔が開いています。これが不溶性の粒子を絡め取り、溶液のみを通過させるため、濾過助剤として広く用いられるようになりました。セライトに含まれる珪藻類は実に200種類以上と言われています[1]。そのほかセライトには珪藻類以外の残留物として、珪質鞭毛藻、放散虫、海綿類なども含まれています[1]

図1   ヘッケルによる珪藻のスケッチ (Wikipedia より)

セライトの化学組成(%)
SiO2 89~90.5
Al2O3 4~5.5
Fe2O3 1.4~1.6
CaO 0.4~0.7
MgO 0.5~0.6

(ーエルサイエンス株式会社HPより引用)

なぜセライトが濾過助剤として優れているのか

液体を濾して不純物を除き、清澄な液を回収する工程は、多くの産業で重要な役割を持っています。 しかし、フィルターの濾網だけで濾すと極小な不純物が抜けてしまったり、その濾網の表面に不純物が溜まって目詰まりを起こし、継続的な良い濾過が出来ません。 ここで濾過用に作られた数多くのセライトの中から濾過液に適したものを使用すると、微細な気孔を持った多様な形の粒子が濾面の上に集合し、緻密で、しかも液体の抵抗の少ない膜を作って、原液が通過する時、液中の極微な固形分を完全に補足し、清澄液が急速に得られます。同時にこの膜は、濾過面の汚れを防ぐ働きもすることになり、長時間の継続濾過が可能になります。

珪藻土工業株式会社 取扱品ラインアップ『珪藻土』.pdf 」より引用

一定のポアサイズを持ったペーパーフィルターでは、微細な固体だと擦り抜けてしまう恐れがあります。セライトは珪藻土の独特な性質によって、より清澄かつ急速な濾過が可能であり、優れた助剤として活用されているということです。

セライトの No. による違い

有機系ラボではセライト No.545 (試薬情報リンク) が最も汎用されていると思いますが、他にも No.535503 などが各試薬メーカーより市販されています。この No. 、何となくお気づきかもしれませんが、大まかに言えば目の細かさを表しています。No. 545 は目が荒く、粘稠な物質 (ワニス・ニカワ・ペクチン・鉱物油・寒天・スターチ・松ヤニ・ラテックスなど。コチラより引用) の濾過に適しています。目の細かさは No. 545 > No. 535 > No. 503 の順で、さらに目の細かいハイフロ・スーパーセルスタンダード・スーパーセルフィルター・セルなどもあります。フィルター・セルには、ファインと呼ばれる小さな珪藻土の粒子や断片が多く含まれており、非常に目が細かくなっています。スーパー・セルはファインがやや少なく、ハイフロ・スーパーセルや No.503、535、545 など流速の速い製品にはほとんどファインが含まれていません。また、これらの目の細かさには融剤焼成の有無も関与しています。珪藻土に炭酸水素ナトリウムを少量添加し、炉で焼成したものを融剤焼成品といいます。融剤焼成品では微粉末や小さな粒子が溶融炭酸ナトリウムによって大きな粒子に付着し、その結果、粒子径が大きくなっています。ハイフロ・スーパーセル、No. 503、535、545 は融剤焼成品です。またセライト No.545 は白色ですが、これも融剤焼成の過程を経て生まれる色です (融剤焼成していないスーパー・セルなどの製品はピンク色をしています)。以下の表にそれぞれの粒状と流速比を示します。

Celite 平均粒状(μm) 流速比
No. 545 25~40 2,160
No. 535 20~30 1,350
No. 503 12~20 900
ハイフロ・スーパーセル 8~12 500
スタンダード・スーパーセル 6~10 200

(株式会社東京今野HPより改変引用)

 

有機合成における濾過以外でのセライトの使い方

炭酸銀(I) をセライトに担持させた試薬は Fetizon試薬 と呼ばれ、マイルドな酸化剤として市販されています (ケムステ記事リンク/試薬メーカーリンク)。フッ化カリウム-セライト (試薬メーカーリンク)は、アルキル化、求核性芳香族置換、マイケル付加、ホスホロアミデート合成、有機スズ廃棄物除去などのためのマイルドな不均一系塩基性触媒として使用されます。1979年に、Ando と Yamawaki は、セライトに担持されたフッ化カリウムが炭素やヘテロ原子のアルキル化を促進することを初めて報告しています[1]。KF-セライトを用いたアルキル化の一例としてアニリンのモノアリル化があります。古典的な第二級アリルアニリンの合成では、第三級アミンにまで進行してしまうのを防ぐため、過剰量のアニリンと長い反応時間が必要になります。一方、アセトニトリル還流下での KF-セライト(1.25eq)の存在下で、求電子試薬に比べてわずかに過剰なアニリン(1.20 equiv.)を用いるだけで、短時間(2-8h)で 67~93 %という単離収率でモノアリル化生成物を回収しています (下図)。

KF担持セライトによるアニリンのモノアリル化 (原著論文[1]、図は総説[3]より)

リパーゼなどの酵素をセライトに固定化し、有機溶媒中で不均一系生体触媒として用いる方法も報告されています[2]。参考文献[2]のマテメソに載っているリパーゼの担持手順を以下に引用します。

The matrix was washed three times with Tris buffer 0.05 M pH 8.5 to remove soluble impurities. The celite-545 (3.5 g), pre-equilibrated in an excess volume of Tris buffer (0.05 M, pH 8.5), was incubated with commercial lipase (Steapsin 6.75 IU/ml and 18.2 mg/ml protein) at 8 °C overnight. The volume of the supernatant, amount of unbound protein, and the lipase activity were estimated. The bound-lipase activity was assayed in 20 mg of matrix. The bound protein in the matrix was determined by subtraction of the unbound protein in the supernatant from the total protein used for immobilization (Hills et al., 1991). The celite-bound lipase (4 g) was treated with a cross-linking agent (12 ml glutaraldehyde; 1%, v/v) to retain its activity for longer period of time (Chae et al., 1998, Palomo et al., 2007).

リパーゼに限らず、キモトリプシンやサブチリシンなどさまざまな生体触媒をセライトに担持させて使用する試みが報告されており、単なる濾過助剤ではないセライトの奥深さが伺えます[3]。有機合成におけるセライトの利用に関しては総説[3]に詳しくまとめられていますので、ぜひ参考にしてみてください。

参考文献

[1] Ando, T.; Yamawaki, J. “Potassium fluoride on celite – versatile reagent for C-alkylation, N-alkylation, O-alkylation, and S-alkylation” , Chem. Lett., 1979, 8, 45-46, DOI: 10.1246/cl.1979.45.
[2] Ashok Kumar, Shamsher S. Kanwar, “Synthesis of ethyl ferulate in organic medium using celite-immobilized lipase”, Bioresource Technology, 2011, 102, 2162-2167, DOI: 10.1016/j.biortech.2010.10.027.
[3] V. Pace, J.V. Sinisterra, A.R. Alcántara, “Celite-Supported Reagents in Organic Synthesis: An Overview”, Current Organic Chemistry, 2010, 14, 2384-2408, DOI: 10.2174/138527210793358213.

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 学会風景2001
  2. プロワイプ:実験室を安価できれいに!
  3. 新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次…
  4. 大川原化工機株式会社のはなし
  5. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  6. 在宅となった化学者がすべきこと
  7. 合成ルートはどれだけ”良く”できるのか?…
  8. マテリアルズ・インフォマティクスにおけるデータの前処理-データ整…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機アジド(1):歴史と基本的な性質
  2. 2016 SciFinder Future Leadersプログラム参加のススメ
  3. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  4. 未来社会創造事業
  5. 長井長義 Nagayoshi Nagai
  6. 本当の天然物はどれ?
  7. マテリアルズ・インフォマティクスにおける分子生成の応用 ー新しい天然有機化合物の生成を目指すー
  8. デヴィッド・エヴァンス David A. Evans
  9. 【第一三共】抗血小板薬「プラスグレル」が初承認‐欧州で販売へ
  10. 尿から薬?! ~意外な由来の医薬品~ その2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年3月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP