[スポンサーリンク]

M

マーフィー試薬 Marfey reagent

[スポンサーリンク]

概要

Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FDAA)は、アミノ酸の光学異性体を識別するための前処理・誘導体化試薬として広く利用されている。Marfey試薬は、アミノ酸の一級アミノ基と反応し、ジアステレオマーを形成する。これにより、逆相HPLCを用いてD体とL体のアミノ酸を効果的に分離・定量可能になる。アミノ酸を単離することなく、簡便な操作で一度に分析・同定が可能であり、汎用ODSカラムで実施できる点が特徴となる。

分離能や検出感度を向上させるために、改良構造が各種報告されている(実施例を参照)。

基本文献

  • Marfey, P. Carlsberg Res. Commun. 1984, 49, 591. doi:10.1007/BF02908688
  • Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K.-I.  Anal. Chem. 1997, 69, 5146-5151. doi:10.1021/ac970289b
  • Kuranaga, T.; Minote, M.; Morimoto, R.; Pan, C.; Ogawa, H.; Kakeya, H. ACS Chem Biol. 2020, 15, 2499–2506. doi:10.1021/acschembio.0c00517
<review>

開発の経緯

1984年、Peter Marfeyによって、アミノ酸のエナンチオマーを識別するための誘導体化試薬として開発された。この方法は、アミノ酸の立体化学を簡便に決定できることから、広く活用されている。

実施例

アミノ酸の立体配置決定

FDAA誘導体は熱的に不安定であるため、質量分析法には適用困難とされていた。原田らは、改良Marfey試薬(FDVA, FDLA)を用いて、質量分析法に適した分析手順へと発展させた。標準試料を使用せずに目的のアミノ酸を同定し、その絶対配置を導き出すことが可能になっている。この手法により、ペプチド天然物中のチアゾールアミノ酸の絶対配置決定が実現されている。[1]

 

検出高感度化を指向したMarfey試薬の改良

倉永・掛谷らは、末端にジメチルアミノ基を有する試薬(FDVDA, FDLDA)へと改変することで、中性pH条件での微量・高感度MS検出を可能とした[2-7]。試薬はナカライテスク社より市販されている。

実施手順

Marfey試薬は、アミノ酸の一級アミノ基と反応し、対応するジアステレオマーを形成する。D-アミノ酸誘導体は強い分子内水素結合を形成するため、対応するL-アミノ酸誘導体よりも極性が低下する。その結果、逆相カラム上でD-誘導体は選択的に保持され、L-誘導体よりも遅れて溶出する。FDVDAを用いる実施手順は関連動画を参照。

関連動画

参考文献

  1. Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K.-I.  Anal. Chem. 1997, 69, 5146-5151. doi:10.1021/ac970289b
  2. (a) Kuranaga, T.; Minote, M.; Morimoto, R.; Pan, C.; Ogawa, H.; Kakeya, H. ACS Chem Biol. 2020, 15, 2499–2506. doi:10.1021/acschembio.0c00517 (b) 倉永 健史, Peptide News Letter Japan 2021, 121(7), 5. [PDF]
  3. Kuranaga, T.; Kakeya, H.; Methods Enzymol. 2022, 665, 105-133. doi:10.1016/bs.mie.2021.11.004
  4. Morimoto, R.; Matsumoto, T.; Minote, M.; Yanagisawa, M.; Yamada, R.; Kuranaga, T.; Kakeya, H.  Chem. Pharm. Bull. 2021, 69, 265-270. doi:10.1248/cpb.c20-00958
  5. Jiang, Y.; Matsumoto, T.; Kuranaga, T.; Lu, S.; Wang, W.; Onaka, H.; Kakeya, H. J. Antibiot. 2021, 74, 307–316. doi:10.1038/s41429-020-00400-3
  6. Pan, C.; Kuranaga, T.; Kakeya, H. J. Nat. Med. 2021, 75, 339–343. doi:10.1007/s11418-020-01472-z

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ジョーンズ酸化 Jones Oxidation
  2. カティヴァ 酢酸合成プロセス Cativa Process fo…
  3. ピナコール転位 Pinacol Rearrangement
  4. ディールス・アルダー反応 Diels-Alder Reactio…
  5. トリメチレンメタン付加環化 Trimethylenemethan…
  6. 還元的脱硫反応 Reductive Desulfurizatio…
  7. パーコウ反応 Perkow Reaction
  8. ルボトム酸化 Rubottom Oxidation

注目情報

ピックアップ記事

  1. 第六回 電子回路を合成するー寺尾潤准教授
  2. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-
  3. 【日産化学 21卒】START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE
  4. 生物活性物質の化学―有機合成の考え方を学ぶ
  5. 最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功
  6. 有機反応を俯瞰する ー挿入的 [1,2] 転位
  7. 触媒的C-H活性化型ホウ素化反応
  8. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素
  9. 「無機化学」とはなにか?
  10. 結晶スポンジ法から始まったミヤコシンの立体化学問題は意外な結末

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP