[スポンサーリンク]

化学者のつぶやき

鍛冶屋はなぜ「鉄を熱いうちに」打つのか?

[スポンサーリンク]

 

 

鉄は熱いうちに打て

時は昔、さすらいの侍は厳しい修行の後、 すこしでも良い名刀を手にするために職人のところに向かった。

そこには頑固で人とほとんど喋らない背中を丸めた初老の男性がひたすら熱した刀を叩いていた…

 

こんな場面、時代劇なんかでよくみませんか? さて、なぜこの職人は刀をたたいているのでしょう?

言葉を変えればことわざになっている「鉄は熱いうちに打て」。これはなんでなのでしょう?

実はこのことわざには、最先端ナノテクノロジーが隠されていたのです。そして2011年のノーベル化学賞のテーマである準結晶もすこし絡んできます。

そんな訳で2009年のScienceからある論文を紹介しようと思います。

Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale

Lu, K.; Lu, L.; Suresh, S Science 2009, 324, 350.  DOI: 10.1126/science.1159610

“固いもの“を作るというのはマテリアルエンジニアリングの最高峰の課題です。磨耗してしまう部位に必要な材料や、壊れて欲しくない部分など、硬ければ硬いほど良いものというのは世の中に沢山あります。

ただし、硬ければ何でも良いというのでは違います。硬さが必要な部分にすべてダイヤモンドを敷き詰めれば事が足りるかというとそういう訳ではありません。つまり手持ちの材料(例えばある金属など)を”エンジニアリング”することによって強度を増すような、そのような指針があることが求められています。

それではどのような状態が硬さを得る上で重要なのでしょうか?このReviewはそのことに関する研究がまとめられた記事です。

 

Untitled.png

(文献より引用)

正解は金属内の結晶サイズをナノサイズにすることです。金属内の結晶が小さければ小さいほど、かかる力が結晶の”境界”に逃げ、結晶そのものに直接負荷がかからなくなり、その結果”強靭な”マテリアルができます(Hall-Petch効果)。油揚げを冷凍庫に入れたものが、普通の柔らかい油揚げよりも簡単に割れる。論理を何段階か無視して極めて雑に説明すると、そういうものと同じような理屈です。

つまりあの刀職人の鍛冶屋さんは、 鉄が熱いうちに刀の中の金属の結晶のドメインを小さくするために、外部から衝撃を与えていたのです(※)。おそらく手練の鍛冶屋なんかは然るべき強さ、方向から鉄を打つことによって、かなり良い感じの結晶サイズをそのなかに作っているということなのでしょう。

ここで少し個人的な感想なのですが、こういう伝統技術は、科学的裏付けがなかった時分、一体どうやって培われていったのだろうと感心します。今までの人間の練習や研究のような営みに対して尊敬するし、これからもいままで感覚として捉えられていたものが「科学」という言語で読み解かれていくのだろうし、そして現代の“伝統技術の継承者“である我ら化学者がこれらの技術を次の次元にいけるようにしていかなくてはなぁと素直に思うのです。

そんな文脈で準結晶の存在が注目されます。有機化学美術館でもすこし触れられていますが、準結晶には硬いマテリアルとして期待がかかっていたことがあったようです。これはおそらく、この結晶面が直線的ではないために、力がどこかひとつに入らず、分散することによって、”折れない””硬い”マテリアルの開発が期待されていたのでしょう。

しかし素の準結晶自体が結晶内の結合レベルであまりに脆いものしか見つかっていないため、硬いものを作るという方向での研究は頓挫してしまっているものと思われます。

現在は主にこういうナノドメインな金属は、メカニカルミリングなどのトップダウン(つまり大きい物を小さくしていくアプローチ)によって達成されるものが主流なようです[1]。ボトムアップ型(つまり小さいものを集めて大きくしていくアプローチ)ではコントロールされた電着による方法なんかが提唱されています[2]。しかしやはり化学者たるものがっちりビルディングブロックを使ったボトムアップ型の方法で勝負したいもの。ごく最近Cornell大学、ニューヨーク州立大学のグループが、ナノパーティクル自体にHall-Petch効果があることなんかも報告していて[3]、この分野からはいろいろと新しいものが見つかるにほひがします。

(※)追記

本文で用いた”強さ”という表現は強度と延性が優れているものを意味しており、このことはいわゆる「ナノメタル系」で達成されるもので、実際の刀の中にも観察される重要な特徴であるものです。叩くというプロセス(鍛造)はこの微細構造を作るにあたり重要なステップということは言えると思います。

ただし実際の日本刀の制作には非常に多くのステップがあり、叩けば硬くなるというような単純化されたものではありません。さらに鍛造には成形という大きな役割もあります。また使われている鉄は主に炭素との合金になっているもので、当然その比率も合金の硬さや結晶性を決めます。

追加参考サイト
刀鍛冶 宗近兵衛 (http://www.katanakazi.com/newpage164.html)
日本刀の刀身構造    (http://www.k3.dion.ne.jp/~j-gunto/gunto_051.htm)

  • 参考文献
[1] 新エネルギー・産業技術総合開発機構 公開報告書 平成15年3月“ナノ組織制御による超高強度化・高耐食工具鋼の研究開発“ http://mandala.t.u-tokyo.ac.jp/~project/DB/reports/tatepj/metal/H14/H14m2.pdf

[2] Lu, L.; Chen, X.;  Huang, X.; Lu. K. Science 2009, 323, 607 DOI: 10.1126/science.1167641

[3] Quan, Z.;  Wang, Y.;  Bae, I-T.;  Loc, W. S.; Wang, C.;  Wang, Z.  Fang, J Nano Letters 2011, ASAP. DOI: 10.1021/nl203409s

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 窒素固定をめぐって-1
  2. トシルヒドラゾンとボロン酸の還元的カップリング反応とその応用展開…
  3. sinceの使い方
  4. 規則的に固定したモノマーをつないで高分子を合成する
  5. 触媒量の金属錯体でリビング開環メタセシス重合を操る
  6. 常温・常圧で二酸化炭素から多孔性材料をつくる
  7. アステラス病態代謝研究会 2018年度助成募集
  8. 話題のAlphaFold2を使ってみた

注目情報

ピックアップ記事

  1. 進化する カップリング反応と 応用展開
  2. 一流ジャーナルから学ぶ科学英語論文の書き方
  3. EU、玩具へのフタル酸エステル類の使用禁止
  4. 【鎮痛・抗炎症薬】医師の認知・愛用率のトップはロキソニン
  5. 非平衡な外部刺激応答材料を「自律化」する
  6. UCLA研究員死亡事故・その後
  7. シアヌル酸クロリド:2,4,6-Trichloro-1,3,5-triazine
  8. 「非晶質ニッケルナノ粒子」のユニークな触媒特性
  9. NMR管
  10. 原田 明 Akira Harada

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年11月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP