[スポンサーリンク]

化学者のつぶやき

触媒量の金属錯体でリビング開環メタセシス重合を操る

[スポンサーリンク]

 

ROMP (ring-opening metathesis polymerization)は遷移金属カルベン錯体を用いた環状オレフィンの開環メタセシス重合であり、光学用透明プラスチックなどといった機能性ポリマーの合成に用いられています。中でも、環歪みの大きいノルボルネンを環状オレフィンとして用いた場合、重合が不可逆的に進行し、かつ停止反応が存在しないことからリビング重合の特徴を有します。そのため、比較的分子量分布の狭いROMPポリマーを合成することが可能です。

しかしながらこの場合、ポリマーの成長末端に存在する金属錯体から重合が進行するため、ポリマー鎖の本数分の金属錯体が必要とされています(図 1a)。合成したROMPポリマーに含まれる金属錯体を除くために、様々な精製法が開発されているものの、煩雑な精製操作や、過酸化水素などといった化学物質を加える必要などがありました。最近、金属触媒を用いない開環メタセシス重合反応が報告されましたが(関連記事:光有機触媒で開環メタセシス重合)まだまだ一般的ではありません。

そこで、金属錯体を触媒量に減らすことができれば、精製操作の簡略化や、金属錯体および精製にかかるコストの低減だけでなく、生体に対して毒である金属の残留量が低く抑えられることからバイオマテリアルへの応用が期待できます。

最近、スイス、フリブール大学のKilbinger教授らは、適切に分子設計したCTA (chain-transfer agent)を用いることで、触媒量の金属錯体を用いたリビングROMPを初めて達成しました(図 1b)。

2015-09-27_23-50-00

図 1. (a) 従来の重合形式、(b) CTAを用いた重合形式[1]

“Catalytic living ring-opening metathesis polymerization”

Nagarkar, A. A.; Kilbinger, A. F. M.;Nature Chem. 2015, 7, 718. DOI: 10.1038/nchem.2320

今回は、本結果について、これまでの報告との違いを示しながら説明したいと思います。

追記 2018年4月12日 2018年4月11日に本論文は取り下げになりました。分子量分散度が間違っていたとのこと。真意のほどはわかりませんが本研究は限りなく捏造に近いと思います。残念です。背景や関連研究については正しい記載ですので、本記事はこのまま残しておきます。Retractionについて詳しくはこちら

触媒量の金属錯体を用いたメタセシス重合

触媒量の金属錯体で行ったメタセシス重合として、非環状ジエンメタセシス重合[2]や、CTAとして酢酸アリルを用いたROMP[3]が知られています。非環状ジエンをモノマーとして用いた場合、ポリマー鎖同士で金属カルベン錯体の交換が起きながら重合が進行するため、金属錯体の量は触媒量で済むからです(図 2a)。また、CTAとして酢酸アリルを用いたROMPでは、成長末端の金属錯体が酢酸アリルと反応して新たな活性種を生成し、別のポリマー鎖が伸長を始めます(図 2b)。これらの重合では金属錯体の量を減らすことができる反面、得られるポリマーはしばしば分子量分布が広く、リビング重合の特徴を示しません。

図2. (a) 非環状ジエンメタセシス重合、(b) 酢酸アリルをCTA として用いたROMP

図2. (a) 非環状ジエンメタセシス重合、(b) 酢酸アリルをCTA として用いたROMP

 

可逆的付加開裂連鎖移動(RAFT)重合

触媒量の活性種でリビング重合を行った例として、可逆的付加開裂連鎖移動(RAFT)重合が挙げられます。RAFT重合では、活性ポリマーの成長末端をドーマント種(重合休止種)に一時的に変換することでリビング重合性を維持することができます。重合不活性な状態であるドーマント種は、活性ポリマーに対して適切に分子設計したCTAを作用させることで生成します。このドーマント種は活性ポリマーと交換反応を起こすことで別の活性ポリマーへと変換され、再び重合することができるようになります(図 3)。このRAFT重合では、

  1. 活性ポリマーをドーマント種に変換することで活性ポリマー同士の反応及び停止反応を抑制できる
  2. ドーマント種と活性ポリマー間の平衡が伸長に比べて速いため、すべてのポリマー鎖が同時に伸長する

といった点から、リビング重合性を維持した分子量分布の狭いポリマーが得られます。

2015-09-28_01-31-36

図3. RAFT重合のメカニズム

 

触媒量の金属錯体を用いたリビング開環メタセシス重合(catalytic living ROMP)

今回報告された重合反応は、リビングROMPに対してドーマント種を反応に組み込むことで金属錯体触媒の量を減らすことに成功しました。CTAとしてシクロヘキセン環を含むスチレン誘導体を設計しており、シクロヘキセン環の開環—閉環メタセシスを経て活性ポリマーはドーマント種に変換されます。また、CTAと活性ポリマー間の反応は基質選択的かつ位置選択的に進行します(図 4,5)。リビング重合の条件である

  1. モノマー/CTAと分子量が比例関係にある
  2. 分子量分布が狭いこと(モノマー/CTA=11.3の時、PDI=1.15)
  3. ポリマー鎖末端にCTAが結合している
  4. ブロック共重合体の合成が可能である

ことを実験によって確かめており、リビング重合性が維持されていることを示しています。

図4 活性ポリマーとCTAとの反応

図4 活性ポリマーとCTAとの反応

図5 catalytic living ROMPの反応機構

図5 catalytic living ROMPの反応機構

 

今回の報告はリビングROMPを触媒量の金属で行った初の例であり、従来のROMP法に比べてルテニウム錯体を50倍減らすことに成功しています。これにより、精製操作の簡略化やコストの削減、バイオマテリアルへの応用が期待できます。注目されているRAFT重合の概念を適用する、思いつきそうなアイデアですが、言うは易し、行うは難しです。日進月歩の高分子化学の発展を今後も紹介していけたらと思います。

 

関連文献

  1.  Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A. Dalton Trans. 2010, 39, 8363. DOI: 10.1039/C001226B
  2. Lehman, S. E.; Wagener, K. B. in Handbook of Metathesis: Catalyst 
Development (ed. Grubbs, R. H.) 2003, 3.9, 283. (Wiley-VCH).
  3. Bielawski, C. W.; Benitez, D.; Morita, T.; Grubbs, R. H. Macromolecules 2001, 34, 8610. DOI: 10.1021/ma010878q
  4. グマアルドリッチ:可逆的付加開裂連鎖移動(RAFT)重合
  5. Keddie, D. J. Chem. Soc. Rev., 2014,43, 496. DOI: 10.1039/C3CS60290G

 

関連書籍

[amazonjs asin=”3527334246″ locale=”JP” title=”Handbook of Metathesis, 3 Volume Set”]

 

外部リンク

Avatar photo

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 始めよう!3Dプリンターを使った実験器具DIY:3Dスキャナー活…
  2. アメリカで Ph. D. を取る –研究室に訪問するの巻–
  3. MIDAボロネートを活用した(-)-ペリジニンの全合成
  4. 有機合成化学協会誌2018年2月号:全アリール置換芳香族化合物・…
  5. 巻いている触媒を用いて環を巻く
  6. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環…
  7. 科学ボランティアは縁の下の力持ち
  8. elements~メンデレーエフの奇妙な棚~

注目情報

ピックアップ記事

  1. ウィリアム・リプスコム William N. Lipscomb Jr.
  2. この窒素、まるでホウ素~ルイス酸性窒素化合物~
  3. コルベ電解反応 Kolbe Electrolysis
  4. 海の生き物からの贈り物
  5. 印象に残った天然物合成1
  6. 夏:今年もスズメバチ防護服の製造ピーク
  7. 存命化学者達のハーシュ指数ランキングが発表
  8. 手で解く量子化学I
  9. 研究者としてうまくやっていくには ー組織の力を研究に活かすー
  10. 植物生合成の謎を解明!?Heteroyohimbine の立体制御

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP