[スポンサーリンク]

化学者のつぶやき

シクロプロパンの数珠つなぎ

[スポンサーリンク]

ivyane_1.gif

(構造図は論文[3]より)

今回はアイヴィーアン(Ivyane)と呼ばれる化合物を紹介しましょう。

これは炭素のトライアングル(シクロプロパン)が多数1,1-連結している、見た目が大変にユニークな炭化水素です。

ごく最近2つのグループから合成法が報告され、各種物性を調べることが可能になりました。


ゲッティンゲン大学ののArmin de Meijereらのアプローチ[1]は、Matterson反応を用いるものです。すなわち、以下のような有機ホウ素試薬を、リチオ化したブロモシクロプロパンと反応させて対応する多連結体を得るというものです。

ivyane_3.gifただ完全な選択的合成が不可能たる点、最終的に取れるアルコールの除去が難しい点がネックです。

ごく最近になって、オーストラリア国立大学のSherburnらが、無置換[n]アイヴィーアン(n=3~8)の合成を報告しました[2]。彼らのアプローチは、[n]デンドラレン(1,1-連結型オリゴエキソエチレン)をSimmons-Smithシクロプロパン化に伏すというもの。

ivyane_2.gifこの手法では、高収率・単工程・グラムスケールにてアイヴィーアンが得られます。これまで知られている無置換アイヴィーアンは最高でも3連結という話ですから、大幅に記録を伸ばした事になります。
彼らはデンドラレン自体の効率的合成法[3]も確立しており、なかなか面白い反応性を示すことを示してもいます。(有機化学美術館さんの記事がまとまっていますので、そちらをご参照いただければ幸いです。)

アイヴィーアンは歪みをかなりもつ化合物たる一方で、その熱安定性は意外にも高いようです。[6]アイヴィーアンは200℃まで加熱しても壊れないそうです。しかし蓄えているエネルギーそのものは大きく、[6]アイヴィーアンは単位質量当たりで、炭化水素中最高の燃焼熱を放出するとのこと。その値は単純にシクロプロパンの6倍と見積もれるそうで、主にシクロプロパンの歪エネルギー由来であることが示唆されています。こういった基礎的治験は、爆薬・燃料などの開発に向けて重要となってきます。

またアイヴィーアン類は、溶液・固体状態にて、らせん状の配座構造をとることも彼ら両名によって示されています(冒頭図)。

「Ivyane」とはSherburnによる命名ですが、らせん構造がツタ(英名Ivy)の巻きつく様子を彷彿とさせることから名付けられたようですね。

変わった構造の化合物とユニークな名称はいろいろありますが、その由来を紐解いてみるのもまた楽し、ではないでしょうか。

  • 関連書籍

 

  • 関連文献
[1] Kurahashi, T.; Kozhushkov, S. I.; Schill, H.; Meindl, K.; Ruhl, S.;  de Meijere, A. Angew. Chem., Int. Ed. 2007, 46, 6545. DOI: 10.1002/anie.200702013

[2] Bojase, G.; Nguyen, T. V.;  Payne, A. D.; Willis, A. C.; Sherburn, M. S. Chem. Sci. 2010 Advance Article. DOI: 10.1039/c0sc00500b

[3] (a) Payne, A. D.; Willis, A. C.;  Sherburn, M. S.  J. Am. Chem. Soc. 2005, 127, 12188. DOI: 10.1021/ja053772+ (b) Payne, A. D.; Bojase, G.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem. Int. Ed. 2009, 48, 4836. DOI: 10.1002/anie.200901733.

  • 関連リンク

デンドラレンの化学 (有機化学美術館)

Dendralene  – Wikipedia

Sherburn Group

Homepage of Prof. Armin de Meijere

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. キッチン・ケミストリー
  2. 複雑な生化学反応の条件検討に最適! マイクロ流体技術を使った新手…
  3. 有機の王冠
  4. 反応の選択性を制御する新手法
  5. アメリカの大学院生だってパーティするっつーの! 【アメリカで P…
  6. 2015年ケムステ人気記事ランキング
  7. テトラセノマイシン類の全合成
  8. 有機レドックスフロー電池 (ORFB)の新展開:高分子を活物質に…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「炭素ナノリング」の大量合成と有機デバイス素子の作製に成功!
  2. ビス(アセトニトリル)パラジウム(II)ジクロリド : Dichlorobis(acetonitrile)palladium(II)
  3. 人の鼻の細菌が抗菌作用がある化合物をつくっていたーMRSAに効果
  4. 日本化学会 第11回化学遺産認定、新たに4件を発表
  5. 水素化ホウ素ナトリウム Sodium Borohydride
  6. 金属内包フラーレンを使った分子レーダーの創製
  7. 秋山隆彦 Takahiko Akiyama
  8. ガスマン インドール合成 Gassman Indole Synthesis
  9. ケムステイブニングミキサー2019に参加しよう!
  10. トリフルオロ酢酸パラジウム(II) : Palladium(II) Trifluoroacetate

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

「ソーシャルメディアを活用したスタートアップの価値向上」 BlockbusterTOKYO 2020 第9回 研修プログラムを実施!

Blockbuster TOKYOは東京都が主催し、Beyond Next Ventures株式会社…

カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路

反応経路の自動探索によりセスキテルペンのトリコブラシレノールの新たな全生合成経路が提唱された。ト…

Chem-Station Twitter

PAGE TOP