[スポンサーリンク]

化学者のつぶやき

シクロプロパンの数珠つなぎ

[スポンサーリンク]

ivyane_1.gif

(構造図は論文[3]より)

今回はアイヴィーアン(Ivyane)と呼ばれる化合物を紹介しましょう。

これは炭素のトライアングル(シクロプロパン)が多数1,1-連結している、見た目が大変にユニークな炭化水素です。

ごく最近2つのグループから合成法が報告され、各種物性を調べることが可能になりました。


ゲッティンゲン大学ののArmin de Meijereらのアプローチ[1]は、Matterson反応を用いるものです。すなわち、以下のような有機ホウ素試薬を、リチオ化したブロモシクロプロパンと反応させて対応する多連結体を得るというものです。

ivyane_3.gifただ完全な選択的合成が不可能たる点、最終的に取れるアルコールの除去が難しい点がネックです。

ごく最近になって、オーストラリア国立大学のSherburnらが、無置換[n]アイヴィーアン(n=3~8)の合成を報告しました[2]。彼らのアプローチは、[n]デンドラレン(1,1-連結型オリゴエキソエチレン)をSimmons-Smithシクロプロパン化に伏すというもの。

ivyane_2.gifこの手法では、高収率・単工程・グラムスケールにてアイヴィーアンが得られます。これまで知られている無置換アイヴィーアンは最高でも3連結という話ですから、大幅に記録を伸ばした事になります。
彼らはデンドラレン自体の効率的合成法[3]も確立しており、なかなか面白い反応性を示すことを示してもいます。(有機化学美術館さんの記事がまとまっていますので、そちらをご参照いただければ幸いです。)

アイヴィーアンは歪みをかなりもつ化合物たる一方で、その熱安定性は意外にも高いようです。[6]アイヴィーアンは200℃まで加熱しても壊れないそうです。しかし蓄えているエネルギーそのものは大きく、[6]アイヴィーアンは単位質量当たりで、炭化水素中最高の燃焼熱を放出するとのこと。その値は単純にシクロプロパンの6倍と見積もれるそうで、主にシクロプロパンの歪エネルギー由来であることが示唆されています。こういった基礎的治験は、爆薬・燃料などの開発に向けて重要となってきます。

またアイヴィーアン類は、溶液・固体状態にて、らせん状の配座構造をとることも彼ら両名によって示されています(冒頭図)。

「Ivyane」とはSherburnによる命名ですが、らせん構造がツタ(英名Ivy)の巻きつく様子を彷彿とさせることから名付けられたようですね。

変わった構造の化合物とユニークな名称はいろいろありますが、その由来を紐解いてみるのもまた楽し、ではないでしょうか。

  • 関連書籍

 

  • 関連文献
[1] Kurahashi, T.; Kozhushkov, S. I.; Schill, H.; Meindl, K.; Ruhl, S.;  de Meijere, A. Angew. Chem., Int. Ed. 2007, 46, 6545. DOI: 10.1002/anie.200702013

[2] Bojase, G.; Nguyen, T. V.;  Payne, A. D.; Willis, A. C.; Sherburn, M. S. Chem. Sci. 2010 Advance Article. DOI: 10.1039/c0sc00500b

[3] (a) Payne, A. D.; Willis, A. C.;  Sherburn, M. S.  J. Am. Chem. Soc. 2005, 127, 12188. DOI: 10.1021/ja053772+ (b) Payne, A. D.; Bojase, G.; Paddon-Row, M. N.; Sherburn, M. S. Angew. Chem. Int. Ed. 2009, 48, 4836. DOI: 10.1002/anie.200901733.

  • 関連リンク

デンドラレンの化学 (有機化学美術館)

Dendralene  – Wikipedia

Sherburn Group

Homepage of Prof. Armin de Meijere

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 材料開発におけるインフォマティクス 〜DBによる材料探索、スペク…
  2. 酵素の動作原理を手本として細孔形状が自在に変形する多孔質結晶の開…
  3. 分子があつまる力を利用したオリゴマーのプログラム合成法
  4. 雷神にそっくり?ベンゼン環にカミナリ走る
  5. ペロブスカイト太陽電池が直面する現実
  6. 【著者に聞いてみた!】なぜ川中一輝はNH2基を有する超原子価ヨウ…
  7. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  8. 有望な若手研究者を発掘ー研究者探索サービス「JDream Exp…

注目情報

ピックアップ記事

  1. 石テレ賞、山下さんら3人
  2. 化学五輪、日本代表4人の高校生が「銅」獲得
  3. パターノ・ビューチ反応 Paterno-Buchi Reaction
  4. NMR管
  5. 書店で気づいたこと ~電気化学の棚の衰退?~
  6. 世界初の気体可塑性エラストマー!!
  7. 第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!
  8. おまえら英語よりもタイピングやろうぜ ~初級編~
  9. アミンの新合成法
  10. 向山水和反応 Mukaiyama Hydration

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

第59回有機反応若手の会

開催概要有機反応若手の会は、全国の有機化学を研究する大学院生を中心とした若手研究…

多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発

第661回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)博士課程1…

可視光でスイッチON!C(sp3)–Hにヨウ素をシャトル!

不活性なC(sp3)–H結合のヨウ素化反応が報告された。シャトル触媒と光励起Pdの概念を融合させ、ヨ…

化学研究者がAIを味方につける時代―専門性を武器にキャリアを広げる方法―

化学の専門性を活かしながら、これからの時代に求められるスキルを身につけたい——。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP