[スポンサーリンク]

archives

トリス[2-(ジメチルアミノ)エチル]アミンを用いた原子移動ラジカル重合

[スポンサーリンク]

 

トリス[2-(ジメチルアミノ)エチル]アミン(Me6TREN) (1)は原子移動ラジカル重合(ATRP)に有用な多座配位子です。ATRPは金属触媒を用いる重合反応であり,高分子の分子量,分子量分布など精密制御を可能にします。例えば一価銅に多座配位子1を配位させた銅(I)錯体は高い活性を示します。続いてハロゲン化アルキルの一電子還元によりラジカル種が生成すると,モノマーとの重合が開始します。一方,一電子酸化を受けた二価銅と1からなる銅(II)錯体は,ハロゲン原子移動を伴う一電子還元により,ポリマー成長末端を休止種(ドーマント種)にします。この一連の反応の繰り返しにより,ATRPは完結します。
この重合では,わずか数ppmの銅触媒で十分な触媒効果が得られます(従来のATRPの約1/1000~1/10000量)。そのため,研究分野のみならず,工業分野への応用が非常に期待されています。

 

[1] “Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene”

W. Jakubowski, K. Min, K. Matyjaszewski, Macromolecules 2006, 39, 39. DOI: 10.1021/ma0522716

The amount of Cu-based catalysts in atom transfer radical polymerization (ATRP) of styrene has been reduced to a few ppm in the presence of the appropriate reducing agents such as FDA approved tin(II) 2-ethylhexanoate (Sn(EH)2) or glucose. The reducing agents constantly regenerate ATRP activator, the Cu(I) species, from the Cu(II) species, formed during termination process, without directly or indirectly producing initiating species that generate new chains. Moreover, the reducing agents allow starting an ATRP with the oxidatively stable Cu(II) species. The reducing/reactivating cycle may also eliminate air or some other radical traps in the system. This new catalytic system is based on regeneration of the activators for an ATRP by electron transfer and therefore was named activators regenerated by electron transfer (ARGET) ATRP. The optimum amount of reducing agent and minimal amount of ATRP Cu catalyst depend on the particular system. For example, styrene was polymerized with 10 ppm of CuCl2/Me6TREN and 100 ppm of Sn(EH)2 resulting in a polystyrene with Mn = 63 000 (Mn,th = 64 000) and Mw/Mn= 1.17.

 

[2] “Synthesis of High Molecular Weight Poly(styrene-co-acrylonitrile) Copolymers with Controlled Architecture”

J. Pietrasilk, H. Dong, K. Matyjaszewski, Macromolecules 2006, 39, 6384. DOI:10.1021/ma0611927

ma0611927n00001

High molecular weight styrene−acrylonitrile (SAN) copolymers were prepared under azeotropic conditions (60 mol % of styrene) by ARGET (activators regenerated by electron transfer) ATRP (atom transfer radical polymerization) at 80 °C in anisole. When a normal ATRP of styrene and acrylonitrile was conducted, the molecular weight of the resulting SAN copolymers was limited due to outer-sphere electron-transfer reactions. This was due to oxidation of polystyryl radicals to carbocations or reduction of polyacrylonitirile radicals to carbanions via reactions with Cu(II) and Cu(I) species, respectively. Since ARGET ATRP employs much lower concentrations of copper catalyst, the contributions of these side reactions are reduced, enabling formation of high molecular weight SAN copolymers (Mn  200 000) with low polydispersity (Mw/Mn < 1.3). Additionally, SAN copolymers with controlled chain architecture were prepared including block copolymers and starlike copolymers.

[3] ”Use of Ascorbic Acid as Reducing Agent for Synthesis of Well-Defined Polymers by ARGET ATRP”

K. Min, H. Gao, K. Matyjaszewski, Macromolecules 2007, 40, 1789. DOI: 10.1021/ma0702041
[4] “Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents”

K. Matyjaszewski, W. Jakubowski, K. Min, W. Tang, J. Huang, W. A. Braunecker, N. V. Tsarevsky, Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15309. DOI: 10.1073/pnas.0602675103

The concept of initiators for continuous activator regeneration (ICAR) in atom transfer radical polymerization (ATRP) is introduced, whereby a constant source of organic free radicals works to regenerate the CuIactivator, which is otherwise consumed in termination reactions when used at very low concentrations. With this technique, controlled synthesis of polystyrene and poly(methyl methacrylate) (Mw/Mn < 1.2) can be implemented with catalyst concentrations between 10 and 50 ppm, where its removal or recycling would be unwarranted for many applications. Additionally, various organic reducing agents (derivatives of hydrazine and phenol) are used to continuously regenerate the CuI activator in activators regenerated by electron transfer (ARGET) ATRP. Controlled polymer synthesis of acrylates (Mw/Mn < 1.2) is realized with catalyst concentrations as low as 50 ppm. The rational selection of suitable Cu complexing ligands {tris[2-(dimethylamino)ethyl]amine (Me6TREN) and tris[(2-pyridyl)methyl]amine (TPMA)} is discussed in regards to specific side reactions in each technique (i.e., complex dissociation, acid evolution, and reducing agent complexation). Additionally, mechanistic studies and kinetic modeling are used to optimize each system. The performance of the selected catalysts/reducing agents in homo and block (co)polymerizations is evaluated.

 

TCIではポリマー合成研究用の試薬を数多く取り揃えております。詳細は下記リンクより参照ください。
≫ 高性能ポリマー研究用試薬

 

  • 関連書籍

[amazonjs asin=”0841237077″ locale=”JP” title=”Controlled/Living Radical Polymerization: Progress in Atrp, Nmp, and Raft (Acs Symposium Series)”]
TCI

TCI

投稿者の記事一覧

有機試薬メーカーです。

関連記事

  1. Accufluor(NFPI-OTf)
  2. 推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進…
  3. 有機機能性色素におけるマテリアルズ・インフォマティクスの活用とは…
  4. ヘキサメチレンテトラミン
  5. 統合失調症治療の新しいターゲット分子候補−HDAC2
  6. 金属ナトリウム分散体(SD Super Fine ™…
  7. 芳香環シラノール
  8. 【基礎からわかる/マイクロ波化学(株)ウェビナー】 マイクロ波の…

注目情報

ピックアップ記事

  1. 第7回ImPACT記者懇親会が開催
  2. 2,5-ジ-(N-(­­­­–)-プロイル)-パラ-ベンゾキノン DPBQ
  3. 化学コミュニケーション賞2022が発表
  4. 亜鉛クロロフィル zinc chlorophyll
  5. PL法 ? ものづくりの担い手として知っておきたい法律
  6. 第42回―「ナノスケールの自己集積化学」David K. Smith教授
  7. 化学研究で役に立つデータ解析入門:回帰分析の応用編
  8. 超音波有機合成 Sonication in Organic Synthesis
  9. 硤合不斉自己触媒反応 Soai Asymmetric Autocatalysis
  10. Pallambins A-Dの不斉全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP