[スポンサーリンク]

化学者のつぶやき

触媒的プロリン酸化を起点とするペプチドの誘導体化

[スポンサーリンク]

保護プロリン5位を選択的に酸化し、5-ヒドロキシプロリンを中~高収率で合成する方法がイリノイ大学・Whiteらのグループによって開発された。この中間体は多能性を持ち、5位置換プロリン・鎖状カルボン酸・アルコール・アミン・オレフィンなどへと変換することで多彩な非天然アミノ酸・ペプチドへと誘導可能である。

“Oxidative diversification of amino acids and peptides by small-molecule iron catalysis”
Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.; White, M. C. Nature 2016, 537, 214–219. doi:10.1038/nature18941

問題設定と解決した点

 非天然アミノ酸含有ペプチドはとりわけ医薬応用に適するが、ほとんどの場合、固相合成などで初期段階からそれを組み込んでいく必要がある。予め作り上げられたペプチドをLate-Stageで誘導体化できれば、多種多様な構造を持つ非天然ペプチドライブラリを迅速に構築することができる。

 本論文ではプロリン5位選択的なLate-Stage C-H酸化を用いることで、多能性中間体である5-ヒドロキシプロリンへと導き、様々な非天然アミノ酸含有ペプチドへと誘導化する方法論を報告している。

技術・手法の肝

 既存法に従う限り、5位置換プロリンはグルタミン酸から数工程を経て合成しなければならなない。C-H変換経由での短工程変換を行おうとすると、通常は最も結合解離エンタルピー(BDE)が小さいC-H結合が切断される。ゆえに2位C-H結合(87 kcal/mol)切断が5位C-H結合(90 kcal/mol)よりも優先され、またこの過程で立体情報も消失してしまう。

 Whiteらが開発したFe(PDP)触媒[1]はかさ高い求電子的酸化触媒であり、立体的・電子的に最も切断しやすいC-H結合を標的とする。このため2位C-H結合よりも空いており、かつ電子豊富(窒素の超共役効果のため)である5位を選択的に酸化する。

 また、Fe(PDP)触媒はバリン/ロイシン側鎖などの三級C-H酸化も進行させる。バリン/ロイシンとプロリンの両方を含むペプチドに対しては、より嵩高いFe(CF3PDP)触媒[2]を用いることで、プロリンのみを選択的に酸化することが可能である。

主張の有効性検証

 N-Nsプロリンメチルエステルを基質に、既報条件[1]に基づきFe(PDP)(25 mol%)を用いて反応を行うと、グルタミン酸誘導体が生じた(式1)。この過剰酸化を抑えるためより穏和な条件(0℃、触媒量15mol%を段階的に加える)で反応を行うと、5-ヒドロキシプロリンが選択的に得られることが分かった(式2)。一方、N-Bocプロリンメチルエステルを同条件に伏すと過剰酸化体であるピログルタミン酸が主に得られた(式3)。

 5-ヒドロキシプロリンは多能性の中間体であり、下記スキームのように多彩な変換が可能である。特に含プロリン環状オリゴペプチドをLate-Stageで変換できる例は注目に値する(プロリンの導入は配座を制限し、大員環化反応を進行させやすくする効果がある)。

議論すべき点

  • Friedel-Crafts反応に依拠するため、導入される芳香環には電子供与基が必須である。芳香環における位置選択性もさほどよくない。立体選択性も嵩高いNs基によって生み出されているらしく、ペプチド中でもこの選択性を出せるかは疑問。
  • なるべく選択的な条件にしているとはいえ、収率は全体的に低め。おそらくは過剰酸化体の併発が原因。
  • 酸化に弱いペプチド側鎖はやはり保護が必要(チロシン側鎖はトリフラートとして保護している)。

次に読むべき論文は?

  • プロリン以外のアミノ酸、例えばバリンやロイシンなどにおける直接誘導体化。
  • White触媒の設計に関する論文[1,2]
  • ペプチド大員環合成、その医薬特性に関する総説など

参考文献

  1. (a) Chen, M. S.; White, M. C. Science 2007, 318, 783. DOI: 10.1126/science.1148597 (b) Chen, M. S.; White, M. C. Science 2010, 327, 566. DOI: 10.1126/science.1183602
  2. Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2013, 135, 14052. DOI: 10.1021/ja407388y
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo …
  2. 世界最高の耐久性を示すプロパン脱水素触媒
  3. Elsevierのニッチな化学論文誌たち
  4. 巻いている触媒を用いて環を巻く
  5. ヒト遺伝子の ヒット・ランキング
  6. SPring-8って何?(初級編)
  7. 銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング…
  8. 乙卯研究所 研究員募集 2022年度

注目情報

ピックアップ記事

  1. 位相情報を含んだ波動関数の可視化に成功
  2. 「世界最小の元素周期表」が登場!?
  3. OIST Science Challenge 2022 (オンライン)に参加してみた
  4. もう入れたよね?薬学会年会アプリ
  5. 入江 正浩 Masahiro Irie
  6. 君はPHOZONを知っているか?
  7. Reaxys体験レポート:ログイン~物質検索編
  8. 放線菌が生産するアベナルミ酸生合成において、ジアゾ化とヒドリド転移による芳香族アミノ基除去システムを発見
  9. 千葉県産の天然資源「ヨウ素」が世界の子どもたちを救う
  10. 2016年2月の注目化学書籍

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その1

Tshozoです。今回はかなり限定した疾患とそれに対するお薬の開発の中身をまとめておこうと思いま…

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP