[スポンサーリンク]

化学者のつぶやき

触媒的プロリン酸化を起点とするペプチドの誘導体化

[スポンサーリンク]

保護プロリン5位を選択的に酸化し、5-ヒドロキシプロリンを中~高収率で合成する方法がイリノイ大学・Whiteらのグループによって開発された。この中間体は多能性を持ち、5位置換プロリン・鎖状カルボン酸・アルコール・アミン・オレフィンなどへと変換することで多彩な非天然アミノ酸・ペプチドへと誘導可能である。

“Oxidative diversification of amino acids and peptides by small-molecule iron catalysis”
Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.; White, M. C. Nature 2016, 537, 214–219. doi:10.1038/nature18941

問題設定と解決した点

 非天然アミノ酸含有ペプチドはとりわけ医薬応用に適するが、ほとんどの場合、固相合成などで初期段階からそれを組み込んでいく必要がある。予め作り上げられたペプチドをLate-Stageで誘導体化できれば、多種多様な構造を持つ非天然ペプチドライブラリを迅速に構築することができる。

 本論文ではプロリン5位選択的なLate-Stage C-H酸化を用いることで、多能性中間体である5-ヒドロキシプロリンへと導き、様々な非天然アミノ酸含有ペプチドへと誘導化する方法論を報告している。

技術・手法の肝

 既存法に従う限り、5位置換プロリンはグルタミン酸から数工程を経て合成しなければならなない。C-H変換経由での短工程変換を行おうとすると、通常は最も結合解離エンタルピー(BDE)が小さいC-H結合が切断される。ゆえに2位C-H結合(87 kcal/mol)切断が5位C-H結合(90 kcal/mol)よりも優先され、またこの過程で立体情報も消失してしまう。

 Whiteらが開発したFe(PDP)触媒[1]はかさ高い求電子的酸化触媒であり、立体的・電子的に最も切断しやすいC-H結合を標的とする。このため2位C-H結合よりも空いており、かつ電子豊富(窒素の超共役効果のため)である5位を選択的に酸化する。

 また、Fe(PDP)触媒はバリン/ロイシン側鎖などの三級C-H酸化も進行させる。バリン/ロイシンとプロリンの両方を含むペプチドに対しては、より嵩高いFe(CF3PDP)触媒[2]を用いることで、プロリンのみを選択的に酸化することが可能である。

主張の有効性検証

 N-Nsプロリンメチルエステルを基質に、既報条件[1]に基づきFe(PDP)(25 mol%)を用いて反応を行うと、グルタミン酸誘導体が生じた(式1)。この過剰酸化を抑えるためより穏和な条件(0℃、触媒量15mol%を段階的に加える)で反応を行うと、5-ヒドロキシプロリンが選択的に得られることが分かった(式2)。一方、N-Bocプロリンメチルエステルを同条件に伏すと過剰酸化体であるピログルタミン酸が主に得られた(式3)。

 5-ヒドロキシプロリンは多能性の中間体であり、下記スキームのように多彩な変換が可能である。特に含プロリン環状オリゴペプチドをLate-Stageで変換できる例は注目に値する(プロリンの導入は配座を制限し、大員環化反応を進行させやすくする効果がある)。

議論すべき点

  • Friedel-Crafts反応に依拠するため、導入される芳香環には電子供与基が必須である。芳香環における位置選択性もさほどよくない。立体選択性も嵩高いNs基によって生み出されているらしく、ペプチド中でもこの選択性を出せるかは疑問。
  • なるべく選択的な条件にしているとはいえ、収率は全体的に低め。おそらくは過剰酸化体の併発が原因。
  • 酸化に弱いペプチド側鎖はやはり保護が必要(チロシン側鎖はトリフラートとして保護している)。

次に読むべき論文は?

  • プロリン以外のアミノ酸、例えばバリンやロイシンなどにおける直接誘導体化。
  • White触媒の設計に関する論文[1,2]
  • ペプチド大員環合成、その医薬特性に関する総説など

参考文献

  1. (a) Chen, M. S.; White, M. C. Science 2007, 318, 783. DOI: 10.1126/science.1148597 (b) Chen, M. S.; White, M. C. Science 2010, 327, 566. DOI: 10.1126/science.1183602
  2. Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2013, 135, 14052. DOI: 10.1021/ja407388y

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機EL素子の開発と照明への応用
  2. 量子化学計算を駆使した不斉ホスフィン配位子設計から導かれる新たな…
  3. 化学者がコンピューター計算を行うべきか?
  4. 架橋シラ-N-ヘテロ環合成の新手法
  5. 男性研究者、育休後の生活を語る。
  6. 第8回慶應有機化学若手シンポジウム
  7. NMR Chemical Shifts ー溶媒のNMR論文より
  8. で、その研究はなんの役に立つの?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カラッシュ付加反応 Kharasch Addition
  2. お茶の水女子大学と奈良女子大学がタッグを組む!
  3. ヴィクター・スニーカス Victor A. Snieckus
  4. 原田 明 Akira Harada
  5. Nature Chemistry誌のインパクトファクターが公開!
  6. What’s Cooking in Chemistry?: How Leading Chemists Succeed in the Kitchen
  7. 印象に残った天然物合成1
  8. バンバーガー転位 Bamberger Rearrangement
  9. 令和元年度 のPRTR データが公表~第一種指定化学物質の排出量・移動量の集計結果~
  10. 投票!2015年ノーベル化学賞は誰の手に??

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP