[スポンサーリンク]

化学者のつぶやき

触媒的プロリン酸化を起点とするペプチドの誘導体化

[スポンサーリンク]

保護プロリン5位を選択的に酸化し、5-ヒドロキシプロリンを中~高収率で合成する方法がイリノイ大学・Whiteらのグループによって開発された。この中間体は多能性を持ち、5位置換プロリン・鎖状カルボン酸・アルコール・アミン・オレフィンなどへと変換することで多彩な非天然アミノ酸・ペプチドへと誘導可能である。

“Oxidative diversification of amino acids and peptides by small-molecule iron catalysis”
Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.; White, M. C. Nature 2016, 537, 214–219. doi:10.1038/nature18941

問題設定と解決した点

 非天然アミノ酸含有ペプチドはとりわけ医薬応用に適するが、ほとんどの場合、固相合成などで初期段階からそれを組み込んでいく必要がある。予め作り上げられたペプチドをLate-Stageで誘導体化できれば、多種多様な構造を持つ非天然ペプチドライブラリを迅速に構築することができる。

 本論文ではプロリン5位選択的なLate-Stage C-H酸化を用いることで、多能性中間体である5-ヒドロキシプロリンへと導き、様々な非天然アミノ酸含有ペプチドへと誘導化する方法論を報告している。

技術・手法の肝

 既存法に従う限り、5位置換プロリンはグルタミン酸から数工程を経て合成しなければならなない。C-H変換経由での短工程変換を行おうとすると、通常は最も結合解離エンタルピー(BDE)が小さいC-H結合が切断される。ゆえに2位C-H結合(87 kcal/mol)切断が5位C-H結合(90 kcal/mol)よりも優先され、またこの過程で立体情報も消失してしまう。

 Whiteらが開発したFe(PDP)触媒[1]はかさ高い求電子的酸化触媒であり、立体的・電子的に最も切断しやすいC-H結合を標的とする。このため2位C-H結合よりも空いており、かつ電子豊富(窒素の超共役効果のため)である5位を選択的に酸化する。

 また、Fe(PDP)触媒はバリン/ロイシン側鎖などの三級C-H酸化も進行させる。バリン/ロイシンとプロリンの両方を含むペプチドに対しては、より嵩高いFe(CF3PDP)触媒[2]を用いることで、プロリンのみを選択的に酸化することが可能である。

主張の有効性検証

 N-Nsプロリンメチルエステルを基質に、既報条件[1]に基づきFe(PDP)(25 mol%)を用いて反応を行うと、グルタミン酸誘導体が生じた(式1)。この過剰酸化を抑えるためより穏和な条件(0℃、触媒量15mol%を段階的に加える)で反応を行うと、5-ヒドロキシプロリンが選択的に得られることが分かった(式2)。一方、N-Bocプロリンメチルエステルを同条件に伏すと過剰酸化体であるピログルタミン酸が主に得られた(式3)。

 5-ヒドロキシプロリンは多能性の中間体であり、下記スキームのように多彩な変換が可能である。特に含プロリン環状オリゴペプチドをLate-Stageで変換できる例は注目に値する(プロリンの導入は配座を制限し、大員環化反応を進行させやすくする効果がある)。

議論すべき点

  • Friedel-Crafts反応に依拠するため、導入される芳香環には電子供与基が必須である。芳香環における位置選択性もさほどよくない。立体選択性も嵩高いNs基によって生み出されているらしく、ペプチド中でもこの選択性を出せるかは疑問。
  • なるべく選択的な条件にしているとはいえ、収率は全体的に低め。おそらくは過剰酸化体の併発が原因。
  • 酸化に弱いペプチド側鎖はやはり保護が必要(チロシン側鎖はトリフラートとして保護している)。

次に読むべき論文は?

  • プロリン以外のアミノ酸、例えばバリンやロイシンなどにおける直接誘導体化。
  • White触媒の設計に関する論文[1,2]
  • ペプチド大員環合成、その医薬特性に関する総説など

参考文献

  1. (a) Chen, M. S.; White, M. C. Science 2007, 318, 783. DOI: 10.1126/science.1148597 (b) Chen, M. S.; White, M. C. Science 2010, 327, 566. DOI: 10.1126/science.1183602
  2. Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2013, 135, 14052. DOI: 10.1021/ja407388y
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環…
  2. iPhone/iPodTouchで使える化学アプリケーション 【…
  3. 論文がリジェクトされる10の理由
  4. 化学探偵Mr.キュリー8
  5. 企業の研究開発のつらさ
  6. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  7. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-…
  8. 大学生向け”オイシイ”情報の集め方

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Nature Chemistry:Research Highlight
  2. 超原子価ヨウ素を触媒としたジフルオロ化反応
  3. SDFって何?~化合物の表記法~
  4. SciFinder Future Leaders in Chemistry 2015に参加しよう!
  5. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Borylation
  6. 奈良坂・プラサード還元 Narasaka-Prasad Reduction
  7. 第96回日本化学会付設展示会ケムステキャンペーン!Part III
  8. クレイグ・ヴェンター J. Craig Venter
  9. BASF、新規のキラル中間体生産プロセスを開発!
  10. 光触媒を用いたC末端選択的な脱炭酸型bioconjugation

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門のシリーズも3回目を迎えました。前回は電子回路を大き…

第101回―「高分子ナノ構造の精密合成」Rachel O’Reilly教授

第101回の海外化学者インタビューは、レイチェル・オライリー教授です。ケンブリッジ大学化学科に所属(…

大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】

アメリカでの PhD 課程の1年目には、多くの大学院の場合, 研究だけでなく、講義の受講やTAの義務…

島津製作所 創業記念資料館

島津製作所の創業から現在に至るまでの歴史を示す資料館で、数々の発明品が展示されている。第10回化学遺…

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー

(さらに…)…

第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授

第100回の海外化学者インタビューは、Yun-Bao Jiang教授です。厦門大学化学科に所属し、電…

Chem-Station Twitter

PAGE TOP