[スポンサーリンク]

archives

リチウムイオン電池の正極・負極≪活物質技術≫徹底解説セミナー

 

★リチウムイオン電池の高効率化に直結する活物質技術!
★正極・負極材料の最適な組み合わせとは?活物質の表面改質技術とは?詳細に解説します!
 
日時 2012年5月17日(木)  10:30~16:30
会場 東京・品川区大井町 きゅりあん  5F 第3講習室
受講料(税込) 47,250円 ( S&T会員受講料 44,800円 ) 
上記価格より:(同一法人に限ります)
  2名で参加の場合1名につき7,350円割引
  3名で参加の場合1名につき10,500円割引
備考 資料・昼食付

参加・詳細はこちらをクリック
  • 講師

 

第1部 リチウムイオン電池正極・負極活物質の開発動向、組み合わせによる反応特性(仮) (10:30~12:00) 
(独)産業技術総合研究所 ユビキタスエネルギー研究部門 グループ長 辰巳 国昭 氏
 
第2部 リチウムイオン電池の正極・負極活物質表面改質技術 (12:45~14:45)
渡辺春夫技術士事務所 所長 渡辺 春夫 氏
【講師紹介】
 
第3部 リチウムイオン電池の寿命と活物質劣化およびその評価 (15:00~16:30)
(株)豊田中央研究所 右京特別研究室 室長 右京 良雄 氏
 
  • プログラム

 

第1部 リチウムイオン電池正極・負極活物質の開発動向、組み合わせによる反応特性(仮)
 
※プログラム作成中
 
第2部 リチウムイオン電池の正極・負極活物質表面改質技術
 
<趣旨>
 リチウムイオン二次電池は、エネルギー貯蔵デバイスとして発展を続けている。このデバイスの主要材料である正・負極の活物質は、優れた材料が開発されて来ているが、さらに改善されるべき課題も存在する。この課題の改善方法として表面改質がある。
 この表面改質によれば、材料粒子の表面のみの僅かな改質で粒子全体の特性を改善でき、弊害が少なく大きな効果を得ることができ、今後の電池の発展を支える重要技術である。本講では、正・負極の活物質について、それぞれの課題とそれに対応した表面改質技術について解説する。
 
1.はじめに
 1.1 実用的表面とは
 1.2 活物質の表面改質の目的・効果
 
2.LiCoO2の表面改質
 2.1 高充電圧化による容量向上
 2.2 活物質による被覆処理
  a) Li(NiCoMn)O2
  b) LiMn2O4
 2.3 金属酸化物による被覆処理
  a) ZrO2
  b) Al2O3
  c) MgO, TiO2, SiO2, ZnO
 
3.LiNiO2の表面改質
 3.1 活物質による被覆処理 (Core-shell型活物質)
 3.2 金属酸化物による被覆処理
  a) ZrO2
  b) TiO2
  c) その他
 
4.LiMn2O4の表面改質
 4.1 活物質による被覆処理
  a) LiCoO2
  b) スピネル系活物質
 4.2 金属酸化物による被覆処理
  a) SiO2
  b) ZrO2, ZnO, CeO2
 4.3 導電性材料による被覆処理
 
5.LiFePO4の表面改質
 5.1 導電性向上技術の位置付け
 5.2 炭素質導電層の形成処理
 5.3 非炭素質導電層の形成処理
  a) 金属材料導電層の形成処理
  b) リチウムイオン導電層の形成処理
 
6.Li4Ti5O12の表面改質
 6.1 炭素質導電層の形成処理
 6.2 非炭素質導電層の形成処理
  a) 金属導電材料による被覆処理
  b) 非金属導電層の形成処理
 
7.炭素質電極活物質の表面改質
 7.1 表面の化学的改質
  a) 表面酸化処理
  b) 表面フッ素化処理
 7.2 炭素質の被着処理
 7.3 非炭素質の被着処理
  a) 金属・金属酸化物の被着処理
  b) 有機高分子材料の被着処理
  4) SEI (Surface Electrolyte Interphase)の形成と制御
 
8.まとめ
 
  □質疑応答・名刺交換□
 
 
第3部 リチウムイオン電池の寿命と活物質劣化およびその評価
 
<趣旨>
 リチウムイオン電池の寿命は電池の抵抗増加と容量減少に分類される。自動車用では特に抵抗上昇、すなわちパワーの低下が電池の寿命を支配する可能性が大きい。本講演では、特に高温での耐久による電池の抵抗上昇について、電池の抵抗の測定法、抵抗の分類法、電池の抵抗増加部位を特定する方法を述べる。また、電池の抵抗増加の原因となる電極活物質、特に正極活物質の変化について概説する。耐久による正極活物質変化の解析法についても、TEM、EELS、XAFS法などについて実際の解析を素に述べる。得られた結果から、抵抗増加を抑制する手法についてもこれまでの例を参考にしながら説明を加える。
 
1.電池と電気自動車
 
2.リチウムイオン電池とは
 2.1 リチウムイオン電池の性能
 2.2 リチウムイオン電池(電極)の構造
 2.3 リチウムイオン電池材料(正負極、セパレーターなど)
 
3.リチウムイオン電池の高温耐久試験
 3.1 高温サイクル耐久試験
 3.2 高温保存耐久試験
 
4.リチウムイオン電池の劣化解析
 4.1 容量減少と抵抗増加
 4.2 電池内の抵抗の種類
 4.3 抵抗増加場所の特定(電気化学解析)
  交流インピーダンス法、3極式電池法などを主体に
 4.4 抵抗増加と活物質変化(物理分析)
  TEM, EELS, XAFSなどを主体に
 
5.抵抗増加の抑制法 
 5.1 活物質の改良
 5.2 使用面からの対策
 
6.まとめ
 
  □質疑応答・名刺交換□
 
参加・詳細はこちらをクリック
The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. (1-ジアゾ-2-オキソプロピル)ホスホン酸ジメチル:Dimet…
  2. 1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスファート:…
  3. 9,10-Dihydro-9,10-bis(2-carboxye…
  4. tert-ブチルメルカプタン:tert-Butyl Mercap…
  5. トリス(2,4-ペンタンジオナト)鉄(III) : Tris(2…
  6. N-ヨードサッカリン:N-Iodosaccharin
  7. トリフルオロメタンスルホン酸ベンゾイル:Benzoyl Trif…
  8. シリカゲル担持4-ヒドロキシ-TEMPOを用いたアルコール類の空…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 中皮腫治療薬を優先審査へ
  2. 「シカゴとオースティンの6年間」 山本研/Krische研より
  3. アルゴン (argon; Ar)
  4. サイエンスアゴラ2015総括
  5. 含ケイ素三重結合化合物(Si≡Mo、Si≡C)
  6. (S,S)-DACH-phenyl Trost ligand
  7. 5社とも増収 経常利益は過去最高
  8. 触媒なの? ?自殺する酵素?
  9. 2つのアシロイン縮合
  10. 有機ルイス酸触媒で不斉向山–マイケル反応

関連商品

注目情報

注目情報

最新記事

2,2,2-トリクロロエトキシカルボニル保護基 Troc Protecting Group

概要2,2,2-トリクロロエトキシカルボニル(2,2,2-trichloroethoxycarb…

二重可変領域抗体 Dual Variable Domain Immunoglobulin

抗体医薬はリウマチやガンなどの難治性疾患治療に有効であり、現在までに活発に開発が進められてきた。…

サイエンスイングリッシュキャンプin東京工科大学

産業のグローバル化が進み、エンジニアにも国際的なセンスや語学力が求められているなか、東京工科大学(東…

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐ…

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

Chem-Station Twitter

PAGE TOP