[スポンサーリンク]

スポットライトリサーチ

未解明のテルペン類の生合成経路を理論的に明らかに

[スポンサーリンク]

 

さて、新年初、そして第9回目となりましたスポットライトリサーチ東京大学大学院 薬学系研究科基礎有機化学教室(内山研究室)から博士後期課程課程3年の佐藤玄さんにお願い致しました。

佐藤さんの研究テーマは、自然が合成する有機化合物のつくられる様(生合成)を計算化学と実験化学を駆使して解明することです。

今回紹介する研究では、テルペンという天然有機化合物群の生合成機構の環化反応に取り組んでいます。研究は大阪市立大学、品田教授らと東大・生物生産工学研究センターの葛山准教授の共同で行い、その研究結果をScientific Reportsに出版・プレスリリースを発表されていたため、お願いさせていただきました。以下の論文となります。

“Cation-Stitching Cascade”: exquisite control of terpene cyclization in cyclooctatin biosynthesis”

Sato, H.; Teramoto, K.; Masumoto, Y.; Tezuka, N.; Sakai, K.; Ueda, S.; Totsuka, Y.; Shinada, T.; Nishiyama, M.; Wang, C.; Kuzuyama, T.; Uchiyama, M.;Sci Rep 2015, 5, 18471. DOI: 10.1038/srep18471

では恒例にて、今回のプレスリリース対象となった研究から、佐藤さん自身に紹介していただきましょう。

 

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

天然には多種多様な生理活性物質が存在し、その生合成機構の解明は基礎科学としてのみならず薬学研究において極めて重要です。しかしながら、酵素内部で起こるドミノ反応は極めて複雑であり、中間体を単離したり、反応経路を直接観測することは一般に困難です。本研究では、計算化学・実験化学両面からのアプローチにより、ジテルペン化合物 Cyclooctatin の骨格形成反応の全貌を明らかにしました(図 1)。

図1. ジテルペン化合物Cyclooctatinの生合成機構解明

図1. ジテルペン化合物Cyclooctatinの生合成機構解明

 

DFT 計算により得られたエネルギーダイアグラムをお示し致します(図 2)。

Cyclooctatin 骨格形成反応は、複雑な多段階反応であり、全部で 12 個の遷移状態を経て生成することが判明しました。大きな活性化エネルギーを必要とするステップは無く、室温条件下で円滑に反応が進行することがわかりました。また、反応全体で約 40 kcal/mol の大きな安定化が起こることも明らかになりました。

 

図2. DFT計算から得られたエネルギーダイアグラム

図2. DFT計算から得られたエネルギーダイアグラム

 

こちらに連続環化反応の動画をお示し致します。

 

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

推定生合成経路に従って計算を行ない、エネルギーダイアグラムを描いてみますと、数カ所にエネルギーギャップが見られました。後に、これらはコンフォメーション変化によるものであると判明しました。

しかし、多段階反応の途中で生じるコンフォメーション変化を事前に予測すること、 3D モデルから微細なコンフォメーションの違いを目視で判断すること、複数の点が同時に変化する反応の遷移状態を求めることは困難でした。そのため、計算化学によって得られた結果を更に詳細に解析するために、いくつかの解析プログラムをC++で作成しました。

また、Cyclooctatin 骨格形成反応の C 環上でのカチオン移動は、1,3-H shift がこれまで提唱されていましたが、[1] DFT 計算により1,2-H shift を二回繰り返す方が有利であることがわかりました。共同研究者らによって、計算で予測したことが実験化学的にも証明された時には、非常に興奮したことを覚えております。

 

Q3. 研究テーマの難しかったところ、またそれをどのように乗り越えたか教えてください。

ひとつひとつの反応を計算することは、極端に難しくはありませんが、多段階反応で、すべての段階を整合性よくつなぎ合わせることは困難でした。また、平面構造式ではあまり複雑に見えない天然物も、実際に Gauss View 上で 3 次元モデルを描いてみるとそのコンフォメーションの数の多さ、複雑さに驚きました。

論文では、一通りのコンフォメーションの経路しか示しておりませんが、実際には数多くのコンフォメーション、反応経路について計算を行ないました。また、Q2 でお答えしましたように、様々な解析プログラムを開発し、これらの問題点を解決しました。

 

Q4. 将来は化学とどう関わっていきたいですか?

本研究では、計算化学を駆使することにより、酵素内部での一見特殊に見える反応や立体選択性を論理的に説明することが出来ました。

複雑に見える酵素反応も、実はシンプルな理論で説明が出来るのではないかと本研究を通じて感じました。今後は、テルペン類に限らず、様々な酵素反応、生合成経路の詳細を実験化学・計算化学の両面から明らかにしていきたいと考えております。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

多くの方のご指導・ご協力により本研究を達成することが出来ました。

共同研究者である東京大学の葛山智久教授、大阪市立大学の品田哲郎教授、指導教員である内山真伸教授に御礼申し上げます。また、論文共著者全ての方々に感謝致します。

 

外部リンク

 

関連文献

  1. Meguro, A.; Motoyoshi, Y.; Teramoto, K.; Ueda, S.; Totsuka, Y.; Ando, Y.; Tomita, T.; Kim, S. T.; Kimura, T.; Igarashi, M.; Sawa, R.; Shinada, T.; Nishiyama, M.; Kuzuyama, T. Angew. Chem. Int. Ed. 2015, 54, 4353-4356. DOI: 10.1002/anie.201411923

 

研究者の略歴

2015-12-29_15-14-14佐藤玄

所属:東京大学大学院 薬学系研究科基礎有機化学教室 博士後期課程 3 年

(理化学研究所 大学院生リサーチアソシエイトJRA)

研究テーマ:「テルペン類の生合成におけるカチオンを駆動力とした環化反応の理論解析」

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. アンモニアを用いた環境調和型2級アミド合成
  2. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~…
  3. イナミドを縮合剤とする新規アミド形成法
  4. 可視光で芳香環を立体選択的に壊す
  5. 「次世代医療を目指した細胞間コミュニケーションのエンジニアリング…
  6. アルデヒドを分液操作で取り除く!
  7. グリコシル化反応を楽にする1位選択的”保護̶…
  8. 【書籍】化学探偵Mr.キュリー5

注目情報

ピックアップ記事

  1. 第136回―「有機化学における反応性中間体の研究」Maitland Jones教授
  2. 活性マグネシウム
  3. 京大北川教授と名古屋大学松田教授のグループが”Air Liquide Essential Molecules Challenge”にて入賞
  4. ウィリアムソンエーテル合成 Williamson ether synthesis
  5. 【速報】2010年ノーベル生理医学賞決定ーケンブリッジ大のエドワード氏
  6. 新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化
  7. 集光型太陽光発電システムの市場動向・技術動向【終了】
  8. フタロシアニン-化学と機能-
  9. 2016 SciFinder Future Leadersプログラム参加のススメ
  10. 日本企業クモ糸の量産技術確立:強さと柔らかさあわせもつ究極の素材

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP