[スポンサーリンク]

スポットライトリサーチ

超分子ランダム共重合を利用して、二つの”かたち”が調和されたような超分子コポリマーを造り、さらに光反応を利用して別々の”かたち”に分ける

[スポンサーリンク]

第407回のスポットライトリサーチは、千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コース 分子集合体化学研究室(矢貝研)の髙橋 渉 (たかはし しょう)さんにお願いしました。

矢貝研究室では新しい分子集合体の創出を研究テーマとし、トポロジーを有する超分子ポリマーや光応答性超分子ポリマー、メカノ発光材料などの開発を行っています。本プレスリリースの研究成果はランダム超分⼦コポリマーについてで、2種類以上の分⼦がランダムに多数結合させて作られたランダムコポリマーは、それぞれの分⼦の特性を併せ持ったポリマー材料となるため広く実⽤化されています。一方、非共有結合によって鎖状につながった超分子ポリマーは、従来のポリマーとは異なり容易に分解・再⽣することができるため、次世代材料として注⽬されています。これらのことより、複数のモノマー分⼦をランダムな配列で超分⼦ポリマー化できれば、多様な性質を持ちながら容易に分解できることが予想されますが、⼀般的にモノマー分⼦には同じ種類ごとに集合しやすい性質があるため、「ランダム超分⼦コポリマー」を作ることは⾮常に困難でした。そこでリング状と棒状の超分⼦ポリマーを作るモノマー分⼦を混ぜて冷やす⽅法によって、2つの構造の特徴が調和された渦状構造のランダム超分⼦コポリマーを形成させることに成功しました。さらに、ランダム超分⼦コポリマーに光を照射し、加熱して再度冷やすという簡単な操作でポリマーを分離させることに成功しました

この研究成果は、「Journal of the American Chemical Society」誌およびプレスリリースに公開されています。

Harmonizing Topological Features of Self-Assembled Fibers by Rosette-Mediated Random Supramolecular Copolymerization and Self-Sorting of Monomers by Photo-Cross-Linking

Sho Takahashi, and Shiki Yagai

J. Am. Chem. Soc. 2022, 144, 29, 13374–13383
DOI: doi.org/10.1021/jacs.2c05484

研究室を主宰されている矢貝史樹 教授より髙橋さんについてコメントを頂戴いたしました!

本成果は、矢貝研が強力に押し進めている「水素結合ロゼットが織りなす湾曲超分子ポリマー」において、ランダム超分子コポリマーを実現した初めての系です。交互とブロックコポリマーはすでにできていたのですが、意外なことにランダムコポリマーができていませんでした。高橋君は、思い入れのある分子を見放すことなくこだわり続け、見事ランダム配列となる分子設計指針の尻尾を掴みました。一方で、ランダム配列であることをAFM以外の手法で証明することは殊更むずかしい。しかしこれも、高橋君の深い洞察力、考え抜く力、粘り強さによって打破されました。このどれかが欠けても、ここまでの成果にはならなかったと思います。それを見事にやり遂げた高橋君の姿を見て、「学部3年生の頃に私が説得しなければ、高橋君はもしかしたらすごいパティシエになっていたかも」という私の数年来の不安がようやく払拭されました(詳しくは髙橋くんのQ.4をご覧ください)。「研究者は研究を介して人を育てることが仕事だ」と感じさせる研究でした。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

ランダム共重合は、複数のモノマーのそれぞれの特性を併せ持ったコポリマーを合成するのに有効な手法です。このことは、モノマーの結合が動的な非共有結合からなる超分子ポリマー1においても期待されます。しかし、超分子ポリマーにおいては、モノマーが自己・非自己を認識して同じモノマー同士で集合しやすいため、分子構造や物性が大きく異なるモノマーをランダムに共重合させることは困難でした。

矢貝研究室では、超分子ポリマーを用いて様々な”かたち”を造形する研究に取り組んでいます2。今回、リング状の超分子ポリマー(以下リング)を形成するモノマー分子A3と直鎖状超分子ポリマー(以下リニア)を形成するモノマー分子BAを基調とし、光架橋部位としてジアセチレンを有する)を用いて、二つのかたちの特徴を調和したような渦状のランダム超分子コポリマーの合成を達成しました(以下スパイラル、図1)。これは、ABがただ結合するのではなく、まず水素結合によって環状に6量化した超分子モノマー(ロゼット)を形成し、このロゼットが積層するという仕組みをもたせていることで実現します。さらに、出来上がったスパイラルに紫外光を照射し、その後加熱・再冷却するという簡便な手法で、ABをリング及びリニアへと分けることに成功しました(図1)。

図1. 以前に報告したモノマー分子Aからなるリング状超分子ポリマー(リング、上段)と今回新たに合成したモノマー分子Bからなる直鎖状超分子ポリマー(リニア、中段)、さらにABが超分子ランダム共重合することで得られる渦状超分子コポリマー(スパイラル)と、リング及びリニアへの分離(下段)。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

モノマー分子Bそのものに深い思い入れがあります。すでにお察しの方もおられるかもしれませんが、Bを合成した当初の目的は、Aが作るリング状超分子ポリマーの光架橋による強化でした。私は、初めてのテーマとしてこの夢いっぱいのテーマを選びました。ところが、私の期待も虚しく、3ヶ月もかかってやっと合成できたBは直線状超分子ポリマーへと自己集合してしまい、当時曲がる超分子ポリマーを売りとしていた矢貝研にとって、それはハズレ分子を意味しました(最近はそうでもないです)。先輩方には慰めの言葉をかけられ、矢貝先生には別のテーマを勧められました。しかし、私は人生で初めて合成したBが可愛くてしょうがなかったので、なんとしてでも形に残したいと思い、勧められた別のテーマも遂行し、学会、卒論と修論などを乗り越えながら、Bの実験を秘密裏に進めました。その中で、積極的に相互作用しないABをあえて混ぜ、ランダムに配列させることで、リングとリニアの特徴を併せ持ったスパイラルが得られることを発見しました。D1の夏に、論文の初稿を先生に読んでいただき、「面白い!」とメッセージが飛んできた時はとても嬉しかったです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

スパイラルに紫外光を照射した後、加熱・再冷却するとリング及びリニアが得られるという現象のメカニズムの解明は難しかったです。先生から変更を提案されたテーマが、簡単に輝かしい成果に化けるわけはなく、論文執筆に取り組んで1年が経とうとしてもなお、この現象のメカニズムは曖昧なままでした。しかし、先生と毎日のようにディスカッションを繰り返していたある日、ある違和感に気づいたので共重合過程の様子をAFM観察したところ、スパイラルはリニアを経由してできていると言う衝撃的な事実が明らかになりました(図2)。この事実は、リングおよびリニアの熱力学パラメータを算出することで、理論シミュレーションからも実証され、これらをきっかけに、曖昧だった部分のメカニズムを解明することができました(詳しくはプレスリリースや論文を読んでいただけると幸いです)。たった1つの発見でこれまでバラバラだったピースが面白いように一貫性のある1枚の絵になり、綺麗なストーリーにまとまりました。一人で熟考し過ぎて煮詰まりがちだった私が、他者と議論して研究を遂行することの大切さを身にしみて感じた経験となりました。

図2. 冷却によるスパイラルの形成過程のAFM像。

Q4. 将来は化学とどう関わっていきたいですか?

私は、昔からお菓子作りが好きで、学部生時代にはバイト先の喫茶店で自作のお菓子を商品として置かせてもらうほどに熱中していました。しまいにはその道に進路変更しようと、B3の時に学務に退学届をもらいに行ったのも良い思い出です(それがたまたま副担任だった矢貝先生の耳に入り、呼び出され、諭されました 笑)。それはさておき、初挑戦のお菓子を作っていると、目的物ではないものが得られることが多々あります。この原因の大半は、工程の意義を理解していないことに起因します。バターは固形のまま使うのか、溶かして使うのか。小麦粉を入れた後はさっくり混ぜるのか、捏ねるように混ぜるのか。これらの手順全てに意義があります。各工程の意義を理解して初めて、想像以上の作品が出来上がるのです。私は研究室に配属されてから、研究も似たような側面があると思いました。装置の原理や実験の意義を理解せず、こうなるからこうなると思い込んでいると、重要なデータを見過ごしたり、意味のないデータを取り続けたりすることがあります。お菓子作りや研究を経験した私は、なんとなくではなく、一つ一つの現象に向き合い、原理からきちんと見つめ直せるような研究者になりたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

B3以降の私の座右の銘は「その先の可能性が多い道を選択する」なのですが、就職するか、博士課程に進学するか、この別れ道に立ったM1の時、就職と言う可能性は博士号取得後でも残っていると考え、博士課程に進学しました。これまでの足取りと自分の成長を振り返り、この道を選ぶ学生がマイノリティである今日の日本で、自分を信じて博士課程に進学して良かったと感じています。博士課程への進学を悩んでいる皆さんは、とりあえず進学してみても良いかもしれませんね!

最後になりますが、私を化学の道に進むよう先導してくださり、論文作成に関して最後まで根気良く付き合ってくださった矢貝先生に厚く御礼を申し上げます。Chem-Stationに寄稿させていただけるような機会をいただけたのは、どんなに忙しくても快くディスカッションの申し出を受け入れてくださり、本気で学生と向き合う矢貝先生のおかげにほかなりません。また、B4の私に研究のイロハを丁寧に教えてくださった北本先生(現東北大学)、測定のご協力をいただいた高エネルギー加速器研究機構の皆様、私をここまで育ててくれた両親、そしてこのように研究を紹介する機会を与えてくださったChem-Stationスタッフの方々に厚く御礼を申し上げ、本寄稿の結びとさせていただきます。

参考文献

  1. a) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Rev. 2001, 101, 4071; b) T. F. A. de Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, E. W. Meijer, Chem. Rev. 2009, 109, 5687; c) T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813.
  2. a) S. Yagai, Y. Kitamoto, S. Datta, B. Adhikari, Chem. Res. 2019, 52, 1325; b) S. Datta, S. Takahashi, S. Yagai, Acc. Mater. Res. 2022, 3, 259.
  3. Yagai, Y. Goto, X. Lin, T. Karatsu, A. Kitamura, D. Kuzuhara, H. Yamada, Y. Kikkawa, A. Saeki, S. Seki, Angew. Chem. Int. Ed. 2012, 51, 6643.

研究者の略歴

名前:髙橋 渉 (たかはし しょう)

所属:千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コース 分子集合体化学研究室 博士後期課程2年 (次世代研究者挑戦的研究プログラム(JST)研究員)

略歴:

1996年 広島県生まれ

2019年3月 千葉大学 工学部 共生応用化学科 卒業

2019年4月–2021年3月 千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コース 博士前期課程

2021年4月– 千葉大学大学院 融合理工学府 先進理化学専攻 共生応用化学コース 博士後期課程

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ポリマーを進化させる!機能性モノマーの力
  2. 音声入力でケムステ記事を書いてみた
  3. 化学者だって数学するっつーの! :定常状態と変数分離
  4. 2011年イグノーベル賞決定!「わさび警報装置」
  5. 理系で研究職以外に進んだ人に話を聞いてみた
  6. ケムステイブニングミキサー2019ー報告
  7. 徒然なるままにセンター試験を解いてみた
  8. 【悲報】HGS 分子構造模型 入手不能に

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. りん酸2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチル : 2-(Methacryloyloxy)ethyl 2-(Trimethylammonio)ethyl Phosphate
  2. Modern Method of Organic Synthesis
  3. 2017年の注目分子はどれ?
  4. 触媒表面の化学反応をナノレベルでマッピング
  5. 芳香族トリフラートからアリールラジカルを生成する
  6. フッ素の特性が織りなす分子変換・材料化学(CSJカレントレビュー:47)
  7. 工程フローからみた「どんな会社が?」~タイヤ編 その2
  8. 抗体-薬物複合体 Antibody-Drug Conjugate
  9. 有機・無機材料の相転移ダイナミクス:数理から未来のマテリアル開発まで
  10. ヨン・ピエール Jorn Piel

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP