[スポンサーリンク]

化学者のつぶやき

MIDAボロネートを活用した(-)-ペリジニンの全合成

[スポンサーリンク]

 

Stereoretentive Suzuki-Miyaura Coupling of Haloallenes Enables Fully Stereocontrolled Access to (-)-Peridinin.
Woerly, E. M.; Cherney, A. H.; Davis, E. K.; Burke, M. D. J. Am. Chem. Soc. 2010, ASAP doi: 10.1021/ja102721p

イリノイ大学のMartin Burkeのグループから今回、MIDAボロネートの特性を最大限に活用したルートでの天然物Peridininの合成が報告されましたのでご紹介します。


MIDAボロネートとは、ボロン酸とN-メチルイミノ二酢酸(MIDA)から調製される「保護型ボロン酸」です。

peridinin_4.gifカルボン酸の電子求引効果、およびメチルアミンによるホウ素空軌道のガードによって、ホウ素アート錯体から進行する数々の反応に対し不活性になるよう設計されています。
このMIDAボロネートはカラムクロマトグラフィでも精製でき、酸素や水にも安定という優れた性質を持ちます。脱保護に水が必要なので、無水のクロスカップリング条件にも不活性です。Sigma-Aldrich社がまとめている反応一覧表によれば、Evansアルドール条件やMeerweinメチル化などのほかにも、Jones酸化Swern酸化、臭素、mCPBAなどといった酸化条件にも耐えるようです。それでいて塩基性水溶液でスムーズに外れるという、なかなかに信じられない性能を誇るようです。

この特性を活かしBurkeは、「反復型鈴木クロスカップリング」によって炭素フラグメント同士を連結する合成ルートを立て、合成を進めています。各フラグメント合成ですが、これがなかなか斬新。どの条件においてもMIDAボロネートは外れず、連続的な変換に耐えています。

peridinin_3.gif
そして以下のようにMIDAボロネート脱保護→鈴木クロスカップリングの反復によって、各フラグメントを連結しています。

peridinin_5.gif
ハロアレンとのクロスカップリングは、SN2’経路酸化的付加との競合によって、立体反転するのがしばしば問題となるそうですが、彼らは自前でその解決法たる最適条件もを見出しています。詳しくは論文を参照して頂きたいですが、ヨードアレン3位の置換基が大きく、リン配位子を巨大にすれば通常型の酸化的付加が優先し、立体保持で進むとのこと。

官能基と炭素骨格ををすべて備えた各フラグメントを完全に作り上げて、最後に鈴木クロスカップリングでつなげるだけ・・・という誰が見てもわかりやすい合成。シンプル・イズ・ベストな合成がオリジナルの最先端技術によって実現されている好例と言えそうです。MIDAボロネートにはまだまだ奥の深い応用性がありそうで、これからも要注目ですね。

 

関連文献

[1] (a) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716. DOI: 10.1021/ja0716204 (b) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc. 2008, 130, 466. DOI: 10.1021/ja078129x (c) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2008, 130, 14084. DOI: 10.1021/ja8063759 (d) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961.DOI: 10.1021/ja901416p (e) Dick, G. R.; Knapp, D. M.;  Gillis, E. P.; Burke, M. D. Org. Lett. 2010, ASAP DOI: 10.1021/ol100671v

 

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 日本ビュッヒ「Cartridger」:カラムを均一・高効率で作成…
  2. 規則的に固定したモノマーをつないで高分子を合成する
  3. 原子一個の電気陰性度を測った! ―化学結合の本質に迫る―
  4. 2014年ノーベル賞受賞者は誰に?ートムソン・ロイター引用栄誉賞…
  5. ものごとを前に進める集中仕事術「ポモドーロ・テクニック」
  6. MRS Fall Meeting 2012に来ています
  7. リンダウ会議に行ってきた①
  8. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)
  2. 抗結核薬R207910の不斉合成
  3. カーボンナノチューブ量産技術を国際会議で発表へ
  4. 文具に凝るといふことを化学者もしてみむとてするなり : ② 「ポスト・イット アドバンス」
  5. COVID-19状況下での化学教育について Journal of Chemical Education 特集号
  6. 文献管理のキラーアプリとなるか? 「ReadCube」
  7. 医薬品のプロセス化学
  8. リチャード・ホルム Richard H. Holm
  9. 高峰譲吉の「アドレナリン」107年目”名誉回復”
  10. ハウアミンAのラージスケール合成

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学者のためのエレクトロニクス講座~次世代配線技術編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

gem-ジフルオロアルケンの新奇合成法

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

Chem-Station Twitter

PAGE TOP