[スポンサーリンク]

化学者のつぶやき

HTEで一挙に検討!ペプチドを基盤とした不斉触媒開発

[スポンサーリンク]

複数の基質を用いたハイスループット実験により、広範な基質適応範囲をもつ不斉アミノキシルラジカル触媒を開発した。最適化においてペプチド鎖の多様性を利用したことが鍵である。

ハイスループット実験による不斉触媒開発法

不斉触媒はここ半世紀で飛躍的な進歩を遂げ、生物活性物質やビルディングブロックの不斉合成を可能にした。不斉触媒反応の開発では、一つの基質をモデルに用いて触媒を最適化することが常法である。迅速な触媒探索ができるが、基質一般性の低下を招くことも少なくない。これに対し、Jacobsenらは、数例知られる不斉Pictet–Spengler反応を対象に、複数の基質を既存の複数の不斉触媒で網羅的に評価するハイスループット実験(HTE)系を確立した(図1A)[1]。しかし、このような評価系が、未開拓の不斉反応で高い基質一般性をもつ新規触媒の開発に適用できるかは不透明であった。

本論文著者らは、ペプチドを基盤とする不斉触媒がHTEによる一般性指向型触媒開発(最適化)法に適すると考えた。ペプチドの多様性・合成容易性がその理由である。対象とした反応はアミノキシルラジカル触媒によるアルコールの不斉酸化である。これまでにBobbittやToniolo、岩渕らによってジオールの不斉非対称化、2級アルコールの光学分割などに有効な不斉アミノキシルラジカル触媒が開発されたが、立体選択性と基質一般性に改善の余地が残されていた(図1B)[2]。今回、著者らはアミノキシルラジカル(Azc-OMe)にペプチド鎖を縮合させた触媒Pを設計し、meso-ジオールの酸化的不斉非対称化の開発に取り組んだ(図1C)。広範な基質セットを用いて触媒活性を評価する一般性指向型触媒開発法により、基質一般性の高いキラルペプチド触媒を見いだした。

図1. (A) HTEを用いた不斉触媒探索 (B) 不斉アミノキシル触媒の先行例 (C) 本研究

 

“Generality-oriented Optimization of Enantioselective Aminoxyl Radical Catalysis”

Rein, J.; Rozema, S. D.; Langner, O. C.; Zacate, S. B.; Hardy, M. A.; Siu, J. C.; Mercado, B. Q.; Sigman, M. S.; Miller, S. J.; Lin, S. Science 2023, 380, 706–712.

DOI: 10.1126/science.adf6177

論文著者の紹介

研究者:Matthew S. Sigman

研究者の経歴:

1996                               Ph.D., Washington University, USA (Prof. Bruce E. Eaton)

1996–1999                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)

1999–2004                  Assistant Professor, University of Utah, USA

2004–2008                  Associate Professor, University of Utah, USA

2008–2016                  Professor, University of Utah, USA

2016–                             Distinguished Professor, University of Utah, USA

研究内容:統計学的最適化手法、電解合成化学、不斉触媒反応の開発

研究者:Scott J. Miller

研究者の経歴:

1994                               Ph.D., Harvard University, USA (Prof. David A. Evans)

1994–1996                  Postdoc, California Institute of Technology, USA (Prof. Robert H. Grubbs)

1996–2001                  Assistant Professor, Boston University, USA

2001–2002                  Associate Professor, Boston University, USA

2002–2006                  Professor, Boston University, USA

2006–                             Professor, Yale University, USA

2008–                             Irénée du Pont Professor of Chemistry, Yale University, USA

研究内容:ペプチドを組み込んだ触媒分子の開発

研究者:Song Lin (林松)

研究者の経歴:

2013                               Ph.D., Harvard University, USA (Prof. Eric N. Jacobsen)

2013–2016                  Postdoc, University of California, Berkeley, USA (Prof. Christopher J. Chang)

2016–2021                  Assistant Professor, Cornell University, USA

2021–2022                  Associate Professor, Cornell University, USA

2023–                             Full Professor, Cornell University, USA

2023–                             Tisch University Professor, Cornell University, USA

研究内容:電解合成化学、不斉触媒反応の開発

論文の概要

まず、ジクロロメタン中、アミノキシルラジカル触媒P1と酸化剤にトリクロロイソシアヌル酸(TCCA)、炭酸水素ナトリウム存在下、meso-ジオールS1を–40 °Cで反応させたところ、ラクトンL1が75%eeで得られることを見いだした(図2A)。その後、コンピュータによる化合物のデータ解析等を用いて単環、多環、鎖状ジオールからなる基質Sを14種類選定し、S1を含めた基質セットを用意した。触媒P1を用いてこれらの基質を反応させ、エナンチオマー過剰率の中央値(eemed)を評価した結果、eemedは16%eeにとどまった。触媒P1のペプチド部位(各アミノ酸)を種々変化させた触媒ライブラリと15種の基質SをHTEし、キラルGCで触媒性能を評価した。このワークフローで得られた各基質群に対するeemedをもとに触媒を構造改変し、最終的に高い基質一般性をもつ不斉触媒P7を開発することに成功した(eemed = 93%ee)。本ワークフローの詳細は論文を参照していただきたい。

基質一般性の一部を示す(図2B)。単環、多環、鎖状の1,4-ジオールから、対応するγ-ラクトンL1, L4, L10が高エナンチオ選択的に得られた。また、上述のワークフローで選択した基質セットに含まれていないシクロブタン環をもつジオールも反応に適用でき、ラクトンL19を98%eeで与えた。1,3-ジオールでも反応が進行し、β-ヒドロキシアルデヒドH23が91%eeで得られた。

著者らは、KIE実験やモノオールを用いた競合実験などによりエナンチオ選択性の発現機構を調査した (図2C)。その結果、系中で生じたオキソアンモニウムイオンがジオールと共有結合および水素結合により錯体を形成すること、この錯形成は平衡であること、続くCope脱離が律速段階であることがわかった。以上のことから、この錯体の安定性がエナンチオ選択性発現の鍵であると示唆された(詳細は論文を参照)。

図2. (A) meso-ジオールの非対称化における触媒構造の最適化 (B) P7を触媒とした基質適応範囲 (C) 推定反応機構

以上、複数の基質を用いたHTEにより触媒の構造を最適化することで、高い基質一般性をもつ触媒が開発された。データ駆動形の触媒開発、ペプチド触媒、ラジカル(触媒)化学の三者の匠が織りなす次世代型の触媒開発法は圧巻の一言である。

参考文献

  1. Wagen, C. C.; McMinn, S. E.; Kwan, E. E.; Jacobsen, E. N. Screening for Generality in Asymmetric Catalysis. Nature 2022, 610, 680–686. DOI: 1038/s41586-022-05263-2
  2. (a) Ma, Z.; Huang, Q.; Bobbitt, J. M. Oxoammonium Salts. 5. A New Synthesis of Hindered Piperidines Leading to Unsymmetrical TEMPO-type Nitroxides. Synthesis and Enantioselective Oxidations with Chiral Nitroxides and Chiral Oxoammonium Salts. J. Org. Chem. 1993, 58, 4837–4843. DOI: 1021/jo00070a018 (b) Murakami, K.; Sasano, Y.; Tomizawa, M.; Shibuya, M.; Kwon, E.; Iwabuchi, Y. Highly Enantioselective Organocatalytic Oxidative Kinetic Resolution of Secondary Alcohols Using Chiral Alkoxyamines as Precatalysts: Catalyst Structure, Active Species, and Substrate Scope. J. Am. Chem.Soc. 2014, 136, 17591–17600. DOI: 10.1021/ja509766f (c) Tomizawa, M.; Shibuya, M.; Iwabuchi, Y. Highly Enantioselective Organocatalytic Oxidative Kinetic Resolution of Secondary Alcohols Using Chirally Modified AZADOs. Org. Lett. 2009, 11, 1829–1831. DOI: 10.1021/ol900441f (d) Formaggio, F.; Bonchio, M.; Crisma, M.; Peggion, C.; Mezzato, S.; Polese, A.; Barazza, A.; Antonello, S.; Maran, F.; Broxterman, Q. B.; Kaptein, B.; Kamphuis, J.; Vitale, R. M.; Saviano, M.; Benedetti, E.; Toniolo, C. Nitroxyl Peptides as Catalysts of Enantioselective Oxidations. Chem. Eur. J. 2002, 8, 84–93. DOI: 10.1002/1521-3765(20020104)8:1<84::AID-CHEM84>3.0.CO;2-N

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 完熟バナナはブラックライトで青く光る
  2. 「研究を諦めたくない」―50代研究者が選んだセカンドステージ
  3. 美麗な分子モデルを描きたい!!
  4. 工学的応用における小分子キラリティーの付加価値: Nature …
  5. 【日産化学】新卒採用情報(2026卒)
  6. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使…
  7. 留学せずに英語をマスターできるかやってみた(4年目)
  8. ヒドロキシ基をスパッと(S)、カット(C)、して(S)、アルキル…

注目情報

ピックアップ記事

  1. ユネスコ女性科学賞:小林教授を表彰
  2. 合成生物学を疾病治療に応用する
  3. スティーブ・ケント Stephen B. H. Kent
  4. 特定の場所の遺伝子を活性化できる新しい分子の開発
  5. 酵素による光学分割 Enzymatic Optical Resolution
  6. カリックスアレーン /calixarene
  7. ジェニファー・ダウドナ Jennifer Doudna
  8. キノリンをLED光でホップさせてインドールに
  9. ペリ環状反応―第三の有機反応機構
  10. 自由研究にいかが?1:ルミノール反応実験キット

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

有機合成化学協会誌2025年6月号:カルボラン触媒・水中有機反応・芳香族カルボン酸の位置選択的変換・C(sp2)-H官能基化・カルビン錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年6月号がオンラインで公開されています。…

【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

現役研究者18名・内定者(26卒)9名が参加!日産化学について・就職活動の進め方・研究職のキャリアに…

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP