[スポンサーリンク]

化学者のつぶやき

HTEで一挙に検討!ペプチドを基盤とした不斉触媒開発

[スポンサーリンク]

複数の基質を用いたハイスループット実験により、広範な基質適応範囲をもつ不斉アミノキシルラジカル触媒を開発した。最適化においてペプチド鎖の多様性を利用したことが鍵である。

ハイスループット実験による不斉触媒開発法

不斉触媒はここ半世紀で飛躍的な進歩を遂げ、生物活性物質やビルディングブロックの不斉合成を可能にした。不斉触媒反応の開発では、一つの基質をモデルに用いて触媒を最適化することが常法である。迅速な触媒探索ができるが、基質一般性の低下を招くことも少なくない。これに対し、Jacobsenらは、数例知られる不斉Pictet–Spengler反応を対象に、複数の基質を既存の複数の不斉触媒で網羅的に評価するハイスループット実験(HTE)系を確立した(図1A)[1]。しかし、このような評価系が、未開拓の不斉反応で高い基質一般性をもつ新規触媒の開発に適用できるかは不透明であった。

本論文著者らは、ペプチドを基盤とする不斉触媒がHTEによる一般性指向型触媒開発(最適化)法に適すると考えた。ペプチドの多様性・合成容易性がその理由である。対象とした反応はアミノキシルラジカル触媒によるアルコールの不斉酸化である。これまでにBobbittやToniolo、岩渕らによってジオールの不斉非対称化、2級アルコールの光学分割などに有効な不斉アミノキシルラジカル触媒が開発されたが、立体選択性と基質一般性に改善の余地が残されていた(図1B)[2]。今回、著者らはアミノキシルラジカル(Azc-OMe)にペプチド鎖を縮合させた触媒Pを設計し、meso-ジオールの酸化的不斉非対称化の開発に取り組んだ(図1C)。広範な基質セットを用いて触媒活性を評価する一般性指向型触媒開発法により、基質一般性の高いキラルペプチド触媒を見いだした。

図1. (A) HTEを用いた不斉触媒探索 (B) 不斉アミノキシル触媒の先行例 (C) 本研究

 

“Generality-oriented Optimization of Enantioselective Aminoxyl Radical Catalysis”

Rein, J.; Rozema, S. D.; Langner, O. C.; Zacate, S. B.; Hardy, M. A.; Siu, J. C.; Mercado, B. Q.; Sigman, M. S.; Miller, S. J.; Lin, S. Science 2023, 380, 706–712.

DOI: 10.1126/science.adf6177

論文著者の紹介

研究者:Matthew S. Sigman

研究者の経歴:

1996                               Ph.D., Washington University, USA (Prof. Bruce E. Eaton)

1996–1999                  Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)

1999–2004                  Assistant Professor, University of Utah, USA

2004–2008                  Associate Professor, University of Utah, USA

2008–2016                  Professor, University of Utah, USA

2016–                             Distinguished Professor, University of Utah, USA

研究内容:統計学的最適化手法、電解合成化学、不斉触媒反応の開発

研究者:Scott J. Miller

研究者の経歴:

1994                               Ph.D., Harvard University, USA (Prof. David A. Evans)

1994–1996                  Postdoc, California Institute of Technology, USA (Prof. Robert H. Grubbs)

1996–2001                  Assistant Professor, Boston University, USA

2001–2002                  Associate Professor, Boston University, USA

2002–2006                  Professor, Boston University, USA

2006–                             Professor, Yale University, USA

2008–                             Irénée du Pont Professor of Chemistry, Yale University, USA

研究内容:ペプチドを組み込んだ触媒分子の開発

研究者:Song Lin (林松)

研究者の経歴:

2013                               Ph.D., Harvard University, USA (Prof. Eric N. Jacobsen)

2013–2016                  Postdoc, University of California, Berkeley, USA (Prof. Christopher J. Chang)

2016–2021                  Assistant Professor, Cornell University, USA

2021–2022                  Associate Professor, Cornell University, USA

2023–                             Full Professor, Cornell University, USA

2023–                             Tisch University Professor, Cornell University, USA

研究内容:電解合成化学、不斉触媒反応の開発

論文の概要

まず、ジクロロメタン中、アミノキシルラジカル触媒P1と酸化剤にトリクロロイソシアヌル酸(TCCA)、炭酸水素ナトリウム存在下、meso-ジオールS1を–40 °Cで反応させたところ、ラクトンL1が75%eeで得られることを見いだした(図2A)。その後、コンピュータによる化合物のデータ解析等を用いて単環、多環、鎖状ジオールからなる基質Sを14種類選定し、S1を含めた基質セットを用意した。触媒P1を用いてこれらの基質を反応させ、エナンチオマー過剰率の中央値(eemed)を評価した結果、eemedは16%eeにとどまった。触媒P1のペプチド部位(各アミノ酸)を種々変化させた触媒ライブラリと15種の基質SをHTEし、キラルGCで触媒性能を評価した。このワークフローで得られた各基質群に対するeemedをもとに触媒を構造改変し、最終的に高い基質一般性をもつ不斉触媒P7を開発することに成功した(eemed = 93%ee)。本ワークフローの詳細は論文を参照していただきたい。

基質一般性の一部を示す(図2B)。単環、多環、鎖状の1,4-ジオールから、対応するγ-ラクトンL1, L4, L10が高エナンチオ選択的に得られた。また、上述のワークフローで選択した基質セットに含まれていないシクロブタン環をもつジオールも反応に適用でき、ラクトンL19を98%eeで与えた。1,3-ジオールでも反応が進行し、β-ヒドロキシアルデヒドH23が91%eeで得られた。

著者らは、KIE実験やモノオールを用いた競合実験などによりエナンチオ選択性の発現機構を調査した (図2C)。その結果、系中で生じたオキソアンモニウムイオンがジオールと共有結合および水素結合により錯体を形成すること、この錯形成は平衡であること、続くCope脱離が律速段階であることがわかった。以上のことから、この錯体の安定性がエナンチオ選択性発現の鍵であると示唆された(詳細は論文を参照)。

図2. (A) meso-ジオールの非対称化における触媒構造の最適化 (B) P7を触媒とした基質適応範囲 (C) 推定反応機構

以上、複数の基質を用いたHTEにより触媒の構造を最適化することで、高い基質一般性をもつ触媒が開発された。データ駆動形の触媒開発、ペプチド触媒、ラジカル(触媒)化学の三者の匠が織りなす次世代型の触媒開発法は圧巻の一言である。

参考文献

  1. Wagen, C. C.; McMinn, S. E.; Kwan, E. E.; Jacobsen, E. N. Screening for Generality in Asymmetric Catalysis. Nature 2022, 610, 680–686. DOI: 1038/s41586-022-05263-2
  2. (a) Ma, Z.; Huang, Q.; Bobbitt, J. M. Oxoammonium Salts. 5. A New Synthesis of Hindered Piperidines Leading to Unsymmetrical TEMPO-type Nitroxides. Synthesis and Enantioselective Oxidations with Chiral Nitroxides and Chiral Oxoammonium Salts. J. Org. Chem. 1993, 58, 4837–4843. DOI: 1021/jo00070a018 (b) Murakami, K.; Sasano, Y.; Tomizawa, M.; Shibuya, M.; Kwon, E.; Iwabuchi, Y. Highly Enantioselective Organocatalytic Oxidative Kinetic Resolution of Secondary Alcohols Using Chiral Alkoxyamines as Precatalysts: Catalyst Structure, Active Species, and Substrate Scope. J. Am. Chem.Soc. 2014, 136, 17591–17600. DOI: 10.1021/ja509766f (c) Tomizawa, M.; Shibuya, M.; Iwabuchi, Y. Highly Enantioselective Organocatalytic Oxidative Kinetic Resolution of Secondary Alcohols Using Chirally Modified AZADOs. Org. Lett. 2009, 11, 1829–1831. DOI: 10.1021/ol900441f (d) Formaggio, F.; Bonchio, M.; Crisma, M.; Peggion, C.; Mezzato, S.; Polese, A.; Barazza, A.; Antonello, S.; Maran, F.; Broxterman, Q. B.; Kaptein, B.; Kamphuis, J.; Vitale, R. M.; Saviano, M.; Benedetti, E.; Toniolo, C. Nitroxyl Peptides as Catalysts of Enantioselective Oxidations. Chem. Eur. J. 2002, 8, 84–93. DOI: 10.1002/1521-3765(20020104)8:1<84::AID-CHEM84>3.0.CO;2-N

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 結合をアリーヴェデルチ! Agarozizanol Bの全合成
  2. Google翻訳の精度が飛躍的に向上!~その活用法を考える~
  3. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の…
  4. 【速報】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  5. ライバルのラボで大発見!そのときあなたはどうする?
  6. 機械学習と計算化学を融合したデータ駆動的な反応選択性の解明
  7. 【十全化学】新卒採用情報
  8. 超塩基に匹敵する強塩基性をもつチタン酸バリウム酸窒化物の合成

注目情報

ピックアップ記事

  1. 電子実験ノートもクラウドの時代? Accelrys Notebook
  2. ケムステV年末ライブ2023を開催します!
  3. 第12回化学遺産認定~新たに3件を認定しました~
  4. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part II
  5. 室内照明で部屋をきれいに 汚れ防ぐ物質「光触媒」を高度化
  6. 全合成研究は創薬化学のトレーニングになり得るか?
  7. 武田薬品工業、米バイオベンチャー買収へ 280億円で
  8. 離れた場所で互いを認識:新たなタイプの人工塩基対の開発
  9. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  10. 医薬品への新しい合成ルートの開拓 〜協働的な触媒作用を活用〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP