[スポンサーリンク]

スポットライトリサーチ

コンピューターが有機EL材料の逆項間交差の速度定数を予言!

[スポンサーリンク]

第278回のスポットライトリサーチは、理化学研究所 夫研究室相澤 直矢(あいざわ なおや)さんにお願いしました。

相澤さんは、有機発光材料の中でも近年活発に研究されている熱活性化遅延蛍光材料について、量子化学計算を用いて研究されています。今回ご紹介いただける内容は、熱活性化遅延蛍光の中で重要なプロセスである逆項間交差の速度定数を量子化学計算を用いて予測したという成果です。本成果は、Nature Communications誌に原著論文として公開され、理化学研究所JSTなどからプレスリリースとして公開されています。また、日経新聞などにも取り上げられています。

“Kinetic prediction of reverse intersystem crossing in organic donor–acceptor molecules”
Aizawa, N.; Harabuchi, Y.; Maeda, S.; Pu,Y. Nat. Commun. 11, 3909 (2020).
doi:10.1038/s41467-020-17777-2

それでは、相澤さんのインタビューをご覧ください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

スマートフォンのディスプレイ等に使われている有機ELの発光材料に関する理論+実験の研究です。具体的には、量子化学計算によって、スピン三重項励起状態から一重項励起状態への遷移である逆項間交差 (Reverse intersystem crossing RISC)の速度定数を予測する方法を開発しました。北海道大学の原渕祐先生と前田理先生との共同研究の成果です。
九州大学の安達千波矢先生らにより開発された熱活性化遅延蛍光(Thermally activated delayed fluorescence TADF)材料は、次世代の有機EL材料として注目され、産学を巻き込んだ研究開発が世界中で行われています。TADF材料は、RISCによって通常は発光しない三重項励起状態を一重項励起状態に変換し、遅延蛍光として利用することで、有機ELの内部量子効率を100%まで高めることが可能です。しかし、吸熱的な遷移であるRISCがTADFを律速し、その寿命は通常の蛍光と比べて非常に長いマイクロ秒からミリ秒に留まっています。この長いTADF寿命は、有機ELの劣化や高輝度時の量子効率の低下につながるため、より速いRISCを示すTADF材料の開発が求められています。
本研究では、一重項励起状態と三重項励起状態のポテンシャルエネルギー面が交わる、すなわち両励起状態のエネルギーが等しくなる交差シームを計算することで、RISCの速度定数を予測する方法を提案しました。この計算を20種類の既知材料に適用したところ、102 s–1から107 s–1におよぶRISCの速度定数の再現に成功しました。さらに、2種類の未知材料についても予測を行い、実験でその有効性を確認しました。予測に基づき合成した材料は、速度定数が107 s–1を超える非常に速いRISCを示します。

図1 (a) 20種類の既知TADF材料の分子構造. (b) 逆項間交差速度定数の実験値–理論値プロット。プロットが実線に近いほど理論が実験値を精度良く再現していることを表す.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

TADF材料のRISCがどのようなメカニズムで起こるかは、国内外の専門家の間で活発に議論されるオープンクエスチョンとなっています。特に、4CzIPN等の速いRISCを示す分子においては、スピン–軌道相互作用に関するEl-Sayed則を満たすように、高次三重項励起状態を介して起こる説が有力です[1]。実は、今回検討したいずれの分子においても、最低一重項励起状態 (S1) と高次三重項励起状態 (Tn) が交差するという面白い計算結果が得られました。比較的単純な最適化アルゴリズムが、現実の物理現象であるRISCの普遍的なメカニズムを示してくれたことに感動したことを覚えています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

実は理論計算を主とした研究は今回が初めてで、Linux計算機を購入して、Gaussianのパスを通して…等、初めてづくしでした。また、今回はメカニズムだけでなく、もう一段難しいキネティクス(速度定数の決定)に主眼を置いていたので、恣意的な計算と思われないようにDFT計算の条件には気を使いました。研究に熱中しすぎて、夫婦でのデート中にスマホで計算を投げるという暴挙に出たこともあります。幸いにも、理論化学の専門家である原渕祐先生と前田理先生との共同研究の機会に恵まれ、エディターリジェクトにもめげず、共著論文の発表までやりきることができました。

Q4. 将来は化学とどう関わっていきたいですか?

化学の醍醐味である「つくる」と「わかる」を両輪に研究を進めたいと思います。今回の理論研究に基づき、コンピューターを使ってより速いRISCを示す分子を設計し、実際に合成することができるはずです。一方で、自分の直感では、今回の理論では説明できない分子も存在し得ると考えています。そのような分子を「つくる」ことができれば、新たな理論の提案も含め、研究を大きく展開できると期待しています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究において、新しい発見をしたときの思わず声が出るような感動は、何ものにも代え難い経験だと思います。大学生・大学院生の皆さんには、そんな瞬間の到来を信じて、研究に励んでほしいです。もしかしたら、ものすごい忍耐や洞察力、そして運が必要かもしれません。小さなアイデアでも良いので、前向きに試し続けることが大切だと思っています。
最後に、日頃より多大なご支援・ご指導を頂いている夫勇進先生、共同研究者の原渕祐先生、前田理先生にお礼申し上げます。またプロジェクトの推進に当たって、数々のご助言を頂いた常行真司総括、中井浩巳アドバイザーをはじめとするJSTさきがけマテリアルズインフォマティクス領域の先生方に、この場を借りて感謝申し上げます。

参考文献

  1. Hiroki Noda, Xian-Kai Chen, Hajime Nakanotani, Takuya Hosokai, Momoka Miyajima, Naoto Notsuka, Yuuki Kashima, Jean-Luc Brédas, Chihaya Adachi, Nature Materials, 18, 1084–1090(2019).
    doi:10.1038/s41563-019-0465-6

関連リンク

  1. 理化学研究所 創発物性科学研究センター 創発超分子材料研究チーム(夫勇進研究室)
  2. プレスリリース:有機半導体の逆項間交差を理論予測~有機EL材料の開発加速へ~
  3. 日本経済新聞:JST・理研・北大、TADF材料の逆項間交差の速度定数を計算機で予測する方法を開発
  4. EurekAlert!: Theoretical prediction of reverse intersystem crossing for organic semiconductors

研究者の略歴

名前:相澤 直矢(あいざわ なおや)
所属:理化学研究所 創発物性科学研究センター 創発超分子材料研究チーム(夫勇進研究室)研究員
略歴:2015年 山形大学理工学研究科 博士後期課程修了 博士(工学)(城戸淳二教授)
2015年–2018年 九州大学稲盛フロンティア研究センター 特任助教(安田琢麿教授)
2018年より現職, 2017年よりJSTさきがけ研究者を兼任.

りゅーとも

投稿者の記事一覧

光化学を嗜む大学院生。専門は超高速分光。カレー好きが転じてついにルーを使わず手作りするように。プロフィール写真はチキンカレーパクチー添えです。

関連記事

  1. 化学者のためのエレクトロニクス講座~電解銅めっき編~
  2. 免疫の生化学 (1) 2018年ノーベル医学賞解説
  3. フッ素のチカラで光学分割!?〜配向基はじめました〜
  4. オキソニウムイオンからの最長の炭素酸素間結合
  5. 社会に出てから大切さに気付いた教授の言葉
  6. ルドルフ・クラウジウスのこと② エントロピー150周年を祝って
  7. 2005年ノーベル化学賞『オレフィンメタセシス反応の開発』
  8. 炭素ー炭素結合を切る触媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高分子マテリアルズ・インフォマティクスのための分子動力学計算自動化ライブラリ「RadonPy」の概要と使い方
  2. ロゼムンド・リンドセー ポルフィリン合成 Rothemund-Lindsey Porphyrin Synthesis
  3. 有機アモルファス蒸着薄膜の自発分極を自在制御することに成功!
  4. アカデミックから民間企業へ転職について考えてみる 第三回
  5. Medical Gases: Production, Applications, and Safety
  6. 少量の塩基だけでアルコールとアルキンをつなぐ
  7. 可逆的に解離・会合を制御可能なサッカーボール型タンパク質ナノ粒子 TIP60の開発
  8. インフルエンザ対策最前線
  9. 化学構造式描画のスタンダードを学ぼう!【応用編】
  10. MOF 結晶表面の敏感な応答をリアルタイム観察

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

アメリカ企業研究員の生活①:1日の仕事の流れ

私はアメリカの大学院(化学科・ケミカルバイオロジー専攻)を卒業し、2年半前からボストンにある中規模の…

ラジカルを活用した新しいケージド化法: アセチルコリン濃度の時空間制御に成功!!

第 524回のスポットライトリサーチは、京都大学大学院 薬学研究科 薬科学専攻 …

第38 回化学反応討論会でケムステをみたキャンペーン

今週の6月7日から9日に九州大学 西新プラザにて第38 回化学反応討論会に参加される皆様にお知らせで…

材料開発を効率化する、マテリアルズ・インフォマティクス人材活用のポイントと進め方

開催日:2023/06/07 申し込みはこちら■開催概要近年、少子高齢化…

材料開発の変革をリードするスタートアップのデータサイエンティストとは?

開催日:2023/06/08  申し込みはこちら■開催概要MI-6はこの度シリーズAラウ…

世界で初めて有機半導体の”伝導帯バンド構造”の測定に成功!

第523回のスポットライトリサーチは、千葉大学 吉田研究室で博士課程を修了された佐藤 晴輝(さとう …

第3回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、7月21日(金)に第3…

第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野のAltac」を開催します!

本格的な夏はまだまだ先ですが、毎日かなり暖かくなってきました。皆様お変わりございませんでしょうか。…

フラノクマリン -グレープフルーツジュースと薬の飲み合わせ-

2023年2月に実施された第108回薬剤師国家試験において、スウィーティーという単語…

構造の多様性で変幻自在な色調変化を示す分子を開発!

第522回のスポットライトリサーチは、北海道大学 有機化学第一研究室(鈴木孝紀 研究室)で博士課程を…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP