[スポンサーリンク]

化学者のつぶやき

ボロールで水素を活性化

「金属を用いず有機分子のみで水素を活性化する化学」が近年相次いで報告されています。
そのきっかけとなったのは、2006年にStephan, D. WらによってScienceに発表された”FLP(Frustrated Lewis Pairs)“を用いる方法[1]だと思います(過去のつぶやき1)。この分野はここ4~5年のうちに急速に発展していて、触媒反応へと展開されたり水素以外のガス(N2O, CO2)や、その他様々な有機化合物との反応も報告されています(過去のつぶやき2)。またFLPによる手法以外にも、一価のガリウムやジゲルミン、ジスタンニン[2]、そしてカルベン[3]等もH-H結合を速やかに開裂させることができます。

さて今回、新しい水素活性化有機分子としてペンタアリールボロールが仲間に加わる、という論文がJACSに報告されていたので紹介します。

C. Fan, L. G. Mercier, W. E. Piers,* H. M. Tuononen, M. Parvez, J. Am. Chem. Soc (2010: ASAP) doi:10.1021/ja105075h

 

ペンタフルオロフェニル基を5つ持つボロール1aの合成は、2009年のAngewandte誌に報告されています[4]。この論文中で、1aは塩基性の低いアセトニトリルとさえ付加体1a・N≡CMeを与える、という結果が得られており、ルイス酸としての高い能力が伺えます。

 

 

rei0702101.gif

 

 

当然、FLPへと展開することに至っています。1aBu3PのFLPは、CD2Cl2溶媒とは反応してしまうがCD5Br中では安定に共存できるとのこと。そこで、CD5Br中で水素の活性化を検討しています。
ところが、予想していた化合物 2はたったの15%以下しか確認できず、それ以外に2種類の主生成物 3が観測されてきました。

 

 

rei0702102.gif

そこでPiersらは、ボロール1aのみと水素を反応させてみる、ということになった訳ですね。

実際に、室温でボロール1aと水素(1atm)を反応させてみたところ、tBu3P存在下で得られた二種類の主生成物と同じスペクトルが得られました。そして各種スペクトル測定・X線構造解析の結果、ボラシクロペンテン3a,3bであることが明らかになりました。

 

rei0702103.gif

ただのルイス酸には勿論そのような能力は無いことでしょう。ボロール1aに隠された秘密を解き明かすべく理論計算を行った結果、の’4π系反芳香族的性質’がこの反応のドライビングフォースに大きく寄与しているとが解りました。

つまり、一分子内の「強いルイス酸性+反芳香族性」が二分子間「FLP」と同じ反応性を示す、という結果を導き出したわけです。

 

興味深いことに、この反応、溶液中だけではなく、ボロールの粉末に水素をあてるだけでも進行するとのこと(しかも3a:3bの生成比が大きく変化します!)。また、全てPh基が置換した(1aよりもルイス酸性の劣る)1bでも同様の反応が進行することを明らかにしています。恐るべし、反芳香族性ですね。

詳細な反応機構は明らかにされていませんが、3がシス-、トランス-の異性体混合物として得られてくることから(溶液、結晶中で生成比が変化することも考慮していると思います)、以下のような反応機構を提唱しています。

 

rei07021044.gif

4π系の環状構造を解消する中間体は、反芳香族性が反応のドライビングフォースに効く計算結果を支持している、と筆者は思います。

今回の反応、「とりあえず混ぜてみた」のかもしれませんが、普通ならルイス酸のみと水素を反応させようとは思わないでしょう。「予想外の結果をしっかり追求しよういう姿勢が、如何に重要であるか」を示している論文だと思います。

ただし、その結果がいつもうまくいくとは限りません。研究内容にもよりますが、目的化合物が決まっている場合、予想外の化合物が「追求するに値するのかどうかを見極める力」も必要ですよね。そんな時、予想外の展開から面白い発見に繋がった前例を多く知っておくことは、正しい判断への助けになることと思います。

 

引用文献

  1.  Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124-1126. [doi:10.1126/science.1134230]
  2. (a) Zhu, Z.; Wang, X.; Peng, Y.; Lei, H.; Fettinger, J. C.; Rivard, E.; Power,P. P. Angew. Chem., Int. Ed. 2009, 48, 2031-2034. [DOI: 10.1002/anie.200805982]; (b) Geoffrey H. Spikes, James C. Fettinger, Philip P. Power. J. Am. Chem. Soc. 2005, 127, 12232-12233. [doi: 10.1021/ja053247a]; (c) Yang Peng, Marcin Brynda, Bobby D. Ellis, James C. Fettinger, Eric Rivard, Philip P. Power, Chem. Commun., 2008, 6042-6044. [DOI: 10.1039/b813442a]
  3.  Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439-441.[DOI: 10.1126/science.1141474]
  4.  Cheng Fan, Warren E. Piers, Masood Parvez, Angew. Chem. Int. Ed. 2009, 48, [DOI: 10.1002/anie.200805865]
The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. 電子実験ノートもクラウドの時代? Accelrys Notebo…
  2. お”カネ”持ちな会社たち-1
  3. 多様なペプチド化合物群を簡便につくるー創薬研究の新技術ー
  4. C-H酸化反応の開発
  5. Chemical Science誌 創刊!
  6. 好奇心の使い方 Whitesides教授のエッセイより
  7. 密着型フィルムのニューフェイス:「ラボピタ」
  8. 天然の保護基!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ペンタレネン Pentalenene
  2. 第4回CSJ化学フェスタに参加してきました!
  3. 白い有機ナノチューブの大量合成に成功
  4. ブロモジメチルスルホニウムブロミド:Bromodimethylsulfonium Bromide
  5. 究極のナノデバイスへ大きな一歩:分子ワイヤ中の高速電子移動
  6. ネイサン・ネルソン Nathan Nelson
  7. 第37回反応と合成の進歩シンポジウムに参加してきました。
  8. サントリー:重曹を使った新しい飲料「水分補給炭酸」発売
  9. <アスクル>無許可で危険物保管 消防法で義務づけ
  10. iPadで計算化学にチャレンジ:iSpartan

関連商品

注目情報

注目情報

最新記事

専門家要らず?AIによる圧倒的高速なスペクトル解釈

第169回目のスポットライトリサーチは、東京大学大学院工学系研究科博士課程・清原慎さんにお願いしまし…

日本プロセス化学会2018ウインターシンポジウム

ご案内日本プロセス化学会(JSPC)が年2回主催するシンポジウムは、最新のプロセス化学の知識を習…

フラーレンの“籠”でH2O2を運ぶ

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。分子内包フラ…

北エステル化反応 Kita Esterification

概要ルテニウム触媒存在下、エチニルエチルエーテル試薬を脱水剤として用い、カルボン酸とアルコールか…

一人二役のフタルイミドが位置までも制御する

N-ヒドロキシフタルイミドを用いる逆マルコフニコフ型のヒドロアミノ化が報告された。遷移金属触媒および…

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

PAGE TOP