[スポンサーリンク]

化学者のつぶやき

ボロールで水素を活性化

「金属を用いず有機分子のみで水素を活性化する化学」が近年相次いで報告されています。
そのきっかけとなったのは、2006年にStephan, D. WらによってScienceに発表された”FLP(Frustrated Lewis Pairs)“を用いる方法[1]だと思います(過去のつぶやき1)。この分野はここ4~5年のうちに急速に発展していて、触媒反応へと展開されたり水素以外のガス(N2O, CO2)や、その他様々な有機化合物との反応も報告されています(過去のつぶやき2)。またFLPによる手法以外にも、一価のガリウムやジゲルミン、ジスタンニン[2]、そしてカルベン[3]等もH-H結合を速やかに開裂させることができます。

さて今回、新しい水素活性化有機分子としてペンタアリールボロールが仲間に加わる、という論文がJACSに報告されていたので紹介します。

C. Fan, L. G. Mercier, W. E. Piers,* H. M. Tuononen, M. Parvez, J. Am. Chem. Soc (2010: ASAP) doi:10.1021/ja105075h

 

ペンタフルオロフェニル基を5つ持つボロール1aの合成は、2009年のAngewandte誌に報告されています[4]。この論文中で、1aは塩基性の低いアセトニトリルとさえ付加体1a・N≡CMeを与える、という結果が得られており、ルイス酸としての高い能力が伺えます。

 

 

rei0702101.gif

 

 

当然、FLPへと展開することに至っています。1aBu3PのFLPは、CD2Cl2溶媒とは反応してしまうがCD5Br中では安定に共存できるとのこと。そこで、CD5Br中で水素の活性化を検討しています。
ところが、予想していた化合物 2はたったの15%以下しか確認できず、それ以外に2種類の主生成物 3が観測されてきました。

 

 

rei0702102.gif

そこでPiersらは、ボロール1aのみと水素を反応させてみる、ということになった訳ですね。

実際に、室温でボロール1aと水素(1atm)を反応させてみたところ、tBu3P存在下で得られた二種類の主生成物と同じスペクトルが得られました。そして各種スペクトル測定・X線構造解析の結果、ボラシクロペンテン3a,3bであることが明らかになりました。

 

rei0702103.gif

ただのルイス酸には勿論そのような能力は無いことでしょう。ボロール1aに隠された秘密を解き明かすべく理論計算を行った結果、の’4π系反芳香族的性質’がこの反応のドライビングフォースに大きく寄与しているとが解りました。

つまり、一分子内の「強いルイス酸性+反芳香族性」が二分子間「FLP」と同じ反応性を示す、という結果を導き出したわけです。

 

興味深いことに、この反応、溶液中だけではなく、ボロールの粉末に水素をあてるだけでも進行するとのこと(しかも3a:3bの生成比が大きく変化します!)。また、全てPh基が置換した(1aよりもルイス酸性の劣る)1bでも同様の反応が進行することを明らかにしています。恐るべし、反芳香族性ですね。

詳細な反応機構は明らかにされていませんが、3がシス-、トランス-の異性体混合物として得られてくることから(溶液、結晶中で生成比が変化することも考慮していると思います)、以下のような反応機構を提唱しています。

 

rei07021044.gif

4π系の環状構造を解消する中間体は、反芳香族性が反応のドライビングフォースに効く計算結果を支持している、と筆者は思います。

今回の反応、「とりあえず混ぜてみた」のかもしれませんが、普通ならルイス酸のみと水素を反応させようとは思わないでしょう。「予想外の結果をしっかり追求しよういう姿勢が、如何に重要であるか」を示している論文だと思います。

ただし、その結果がいつもうまくいくとは限りません。研究内容にもよりますが、目的化合物が決まっている場合、予想外の化合物が「追求するに値するのかどうかを見極める力」も必要ですよね。そんな時、予想外の展開から面白い発見に繋がった前例を多く知っておくことは、正しい判断への助けになることと思います。

 

引用文献

  1.  Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124-1126. [doi:10.1126/science.1134230]
  2. (a) Zhu, Z.; Wang, X.; Peng, Y.; Lei, H.; Fettinger, J. C.; Rivard, E.; Power,P. P. Angew. Chem., Int. Ed. 2009, 48, 2031-2034. [DOI: 10.1002/anie.200805982]; (b) Geoffrey H. Spikes, James C. Fettinger, Philip P. Power. J. Am. Chem. Soc. 2005, 127, 12232-12233. [doi: 10.1021/ja053247a]; (c) Yang Peng, Marcin Brynda, Bobby D. Ellis, James C. Fettinger, Eric Rivard, Philip P. Power, Chem. Commun., 2008, 6042-6044. [DOI: 10.1039/b813442a]
  3.  Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439-441.[DOI: 10.1126/science.1141474]
  4.  Cheng Fan, Warren E. Piers, Masood Parvez, Angew. Chem. Int. Ed. 2009, 48, [DOI: 10.1002/anie.200805865]
The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. 鉄錯体による触媒的窒素固定のおはなし-1
  2. ケムステイブニングミキサー2019に参加しよう!
  3. 実験の再現性でお困りではありませんか?
  4. 磁石でくっつく新しい分子模型が出資募集中
  5. プレプリントサーバー:ジャーナルごとの対応差にご注意を【更新版】…
  6. 研究者よ景色を描け!
  7. クロム光レドックス触媒を有機合成へ応用する
  8. 共有結合性リガンドを有するタンパク質の網羅的探索法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 諸熊 奎治 Keiji Morokuma
  2. アロイ・フュルストナー Alois Furstner
  3. 液クロ虎の巻シリーズ
  4. SPring-8って何?(初級編)
  5. テトロドトキシン てとろどときしん tetrodotoxin(TTX)
  6. ピエトロ・ビギネリ Pietro Biginelli
  7. 辻・ウィルキンソン 脱カルボニル化反応 Tsuji-Wilkinson Decarbonylation
  8. ガッターマン アルデヒド合成 Gattermann Aldehyde Synthesis
  9. 「重曹でお掃除」の化学(その1)
  10. プメラー転位 Pummerer Rearrangement

関連商品

注目情報

注目情報

最新記事

電池長寿命化へ、充電するたびに自己修復する電極材

東京大学大学院工学系研究科の山田淳夫教授らは、充電するたびに自己修復を繰り返し、電池性能の劣化を防ぐ…

(−)-Salinosporamide Aの全合成

(−)-salinosporamide Aの立体選択的全合成が達成された。アザ-ペイン転位/ヒドロア…

クラウド版オフィススイートを使ってみよう

クラウド版オフィススイートとはOffice onlineやGoogle ドライブなどのことで、ソフト…

NHCが触媒する不斉ヒドロフッ素化

キラルなN–ヘテロ環状カルベン(NHC)を触媒として用いたα,β-不飽和アルデヒドに対する不斉ヒドロ…

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

Chem-Station Twitter

PAGE TOP