[スポンサーリンク]

化学者のつぶやき

ボロールで水素を活性化

[スポンサーリンク]

「金属を用いず有機分子のみで水素を活性化する化学」が近年相次いで報告されています。
そのきっかけとなったのは、2006年にStephan, D. WらによってScienceに発表された”FLP(Frustrated Lewis Pairs)“を用いる方法[1]だと思います(過去のつぶやき1)。この分野はここ4~5年のうちに急速に発展していて、触媒反応へと展開されたり水素以外のガス(N2O, CO2)や、その他様々な有機化合物との反応も報告されています(過去のつぶやき2)。またFLPによる手法以外にも、一価のガリウムやジゲルミン、ジスタンニン[2]、そしてカルベン[3]等もH-H結合を速やかに開裂させることができます。

さて今回、新しい水素活性化有機分子としてペンタアリールボロールが仲間に加わる、という論文がJACSに報告されていたので紹介します。

C. Fan, L. G. Mercier, W. E. Piers,* H. M. Tuononen, M. Parvez, J. Am. Chem. Soc (2010: ASAP) doi:10.1021/ja105075h

 

ペンタフルオロフェニル基を5つ持つボロール1aの合成は、2009年のAngewandte誌に報告されています[4]。この論文中で、1aは塩基性の低いアセトニトリルとさえ付加体1a・N≡CMeを与える、という結果が得られており、ルイス酸としての高い能力が伺えます。

 

 

rei0702101.gif

 

 

当然、FLPへと展開することに至っています。1aBu3PのFLPは、CD2Cl2溶媒とは反応してしまうがCD5Br中では安定に共存できるとのこと。そこで、CD5Br中で水素の活性化を検討しています。
ところが、予想していた化合物 2はたったの15%以下しか確認できず、それ以外に2種類の主生成物 3が観測されてきました。

 

 

rei0702102.gif

そこでPiersらは、ボロール1aのみと水素を反応させてみる、ということになった訳ですね。

実際に、室温でボロール1aと水素(1atm)を反応させてみたところ、tBu3P存在下で得られた二種類の主生成物と同じスペクトルが得られました。そして各種スペクトル測定・X線構造解析の結果、ボラシクロペンテン3a,3bであることが明らかになりました。

 

rei0702103.gif

ただのルイス酸には勿論そのような能力は無いことでしょう。ボロール1aに隠された秘密を解き明かすべく理論計算を行った結果、の’4π系反芳香族的性質’がこの反応のドライビングフォースに大きく寄与しているとが解りました。

つまり、一分子内の「強いルイス酸性+反芳香族性」が二分子間「FLP」と同じ反応性を示す、という結果を導き出したわけです。

 

興味深いことに、この反応、溶液中だけではなく、ボロールの粉末に水素をあてるだけでも進行するとのこと(しかも3a:3bの生成比が大きく変化します!)。また、全てPh基が置換した(1aよりもルイス酸性の劣る)1bでも同様の反応が進行することを明らかにしています。恐るべし、反芳香族性ですね。

詳細な反応機構は明らかにされていませんが、3がシス-、トランス-の異性体混合物として得られてくることから(溶液、結晶中で生成比が変化することも考慮していると思います)、以下のような反応機構を提唱しています。

 

rei07021044.gif

4π系の環状構造を解消する中間体は、反芳香族性が反応のドライビングフォースに効く計算結果を支持している、と筆者は思います。

今回の反応、「とりあえず混ぜてみた」のかもしれませんが、普通ならルイス酸のみと水素を反応させようとは思わないでしょう。「予想外の結果をしっかり追求しよういう姿勢が、如何に重要であるか」を示している論文だと思います。

ただし、その結果がいつもうまくいくとは限りません。研究内容にもよりますが、目的化合物が決まっている場合、予想外の化合物が「追求するに値するのかどうかを見極める力」も必要ですよね。そんな時、予想外の展開から面白い発見に繋がった前例を多く知っておくことは、正しい判断への助けになることと思います。

 

引用文献

  1.  Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124-1126. [doi:10.1126/science.1134230]
  2. (a) Zhu, Z.; Wang, X.; Peng, Y.; Lei, H.; Fettinger, J. C.; Rivard, E.; Power,P. P. Angew. Chem., Int. Ed. 2009, 48, 2031-2034. [DOI: 10.1002/anie.200805982]; (b) Geoffrey H. Spikes, James C. Fettinger, Philip P. Power. J. Am. Chem. Soc. 2005, 127, 12232-12233. [doi: 10.1021/ja053247a]; (c) Yang Peng, Marcin Brynda, Bobby D. Ellis, James C. Fettinger, Eric Rivard, Philip P. Power, Chem. Commun., 2008, 6042-6044. [DOI: 10.1039/b813442a]
  3.  Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439-441.[DOI: 10.1126/science.1141474]
  4.  Cheng Fan, Warren E. Piers, Masood Parvez, Angew. Chem. Int. Ed. 2009, 48, [DOI: 10.1002/anie.200805865]

関連記事

  1. 第11回ケムステVシンポジウム「最先端精密高分子合成」を開催しま…
  2. イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加
  3. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  4. 文献管理のキラーアプリとなるか? 「ReadCube」
  5. 150度以上の高温で使える半導体プラスチック
  6. 史上最も不運な化学者?
  7. 2014年ノーベル化学賞・物理学賞解説講演会
  8. 化学物質恐怖症への処方箋

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 三井物と保土谷 多層カーボンナノチューブを量産
  2. 電気化学ことはじめ(2) 電位と電流密度
  3. 研究室の大掃除マニュアル
  4. ワークアップの悪夢 反応後の後処理で困った場合の解決策
  5. 局所的な“粘度”をプローブする羽ばたくFLAP蛍光分子
  6. ケミカルメーカーのライフサエンス事業戦略について調査結果を発表
  7. 元素生活 完全版
  8. ナノ粒子で疾病の発生を容易に追跡
  9. 第25回「ペプチドを化学ツールとして細胞を操りたい」 二木史朗 教授
  10. 特許にまつわる初歩的なあれこれ その1

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

「ソーシャルメディアを活用したスタートアップの価値向上」 BlockbusterTOKYO 2020 第9回 研修プログラムを実施!

Blockbuster TOKYOは東京都が主催し、Beyond Next Ventures株式会社…

カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路

反応経路の自動探索によりセスキテルペンのトリコブラシレノールの新たな全生合成経路が提唱された。ト…

特許の効力と侵害

bergです。今回は知的財産権の代表格である特許権について、その効力と侵害された/侵害してしまったと…

光レドックス触媒反応 フォトリアクター Penn PhD Photoreactor M2をデモしてみた

いまや有機反応の開発に欠かせなくなった可視光反応場。多くの化学論文誌で毎週必ずいくつかみるほどですね…

有機合成化学協会誌2021年2月号:デオキシプロピオナート構造・遠隔不斉誘導反応・還元的化学変換・海洋シアノバクテリア・光学活性キニーネ

有機合成化学協会が発行する有機合成化学協会誌、2021年2月号がオンライン公開されました。大…

Chem-Station Twitter

PAGE TOP