[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~

[スポンサーリンク]

bergです。化学者のためのエレクトロニクス入門と銘打ったこのコーナーも、今回で4回目となりました。前回は半導体製造プロセスの仕組みと、それにかかわるファインケミカルの生産に携わっている企業をご紹介しました。

今回はプリント基板の製造プロセスに関連する製品・企業に焦点を当てていきます。この分野もニッチながら、日本の化学・素材メーカーが存在感を発揮している分野です。製造工程の上流から順を追ってみていきましょう。

①銅張積層板(CCL)

概要

プリント基板製造の大本になる材料です。絶縁体の樹脂などに薄い銅箔を均一に張り合わせて作られています。

供給元

国内ではAGC(旧:旭硝子)、日立化成(2020年10月より昭和電工マテリアルズに改名予定)、日本製鋼(旧:新日鐵住金)など。海外では台光電子材料など。

最近のトピック

5G通信への対応など高周波特性を改善する目的で、低誘電率の樹脂材料の探索が進められています。

②ソルダーレジスト

SOLDER_RESIST

緑色の部分がソルダーレジスト(画像:Wikipedia

概要

フォトレジストの一種ですが、基板の銅配線を絶縁し、はんだなどから保護する役割があります。

緑色のものが安価で広く普及していますが、近年では様々な用途に合わせた製品が登場しています。

供給元

太陽ホールディングスが首位。ほかにタムラ製作所日立化成(2020年10月より昭和電工マテリアルズに改名予定)、東洋紡東亞合成など

最近のトピック

5G通信への対応など高周波特性を改善する目的で、低誘電率材料の探索が進められています。

③金属めっき薬品

PCB

基板上の銅/無電解ニッケル/置換金めっき(ENIG)(画像:Pixabay

概要

プリント基板の銅配線や、素子を実装する際のはんだめっき、外部との電気的接続をつかさどる金コネクタなどの製造プロセスに使われるのがめっき技術です。

前回も紹介しましたが、銅や金は低温でも非常に拡散しやすいため、銅の表面に直接金めっきを施すと長時間経過後に表面の金めっきが原子レベルで内側へと拡散し、めっき自体が消滅してしまいます。そこで、拡散しにくい金属(バリアメタル)の薄膜を中間に形成する手法が広く用いられています。バリアメタルとしてはNiPdが一般に利用されています。

なお、コネクタなどの接点部位は機械的な外力に繰り返しさらされることから柔らかい純金では摩耗してしまいます。そこで、NiやCoとの合金(硬質金)とすることで強度を確保するのが一般的です。しかし、そのままでは電気陰性度のまったく異なる金属同士を一定の比率で析出させることは困難であることから、各種の添加剤が重要で、高度な技術力が必要な分野となっています。

供給元

めっきの種類ごとにおおむね棲み分けができています。

日本高純度化学:リードフレーム、コネクタ用貴金属めっきなど世界トップ。特にスマホ向けはほぼ独占

上村工業:無電解ニッケルで世界トップ

日本エレクトロプレイティング・エンジニヤース(EEJA):貴金属めっき液のラインアップ数トップ

小島薬品化学:高純度が要求される貴金属めっき液

JCU:銅ビアフィルでトップクラス、装飾用も

石原ケミカル:はんだめっき、ウエハバンプ用めっき

 

最近のトピック

貴金属は地殻中の存在量自体が少ないことから、数千円/g以上と極めて高価です。また、鉱床の多くが特定の国家・地域(独裁国家や政情不安定・係争中の地域)に偏在しており、政治的なリスクなどから安定供給に不安があるものも少なくありません。そのため、その使用量の低減(省金化)の努力が払われています。

また、半導体内部の配線にはここ四半世紀銅が用いられてきましたが、近年では微細化による性能面(エレクトロマイグレーション:高電流密度による配線の破損、など)での限界に直面しています。そのため、次世代の微細配線材料としてはCoRuが一躍脚光を浴びています。

④フラックス

Flux_Pen

市販のフラックス(画像:Wikipedia

概要

はんだづけ性を良好にするためなどに塗布される薬品で、ロジン(樹脂)と銅表面の酸化膜を除去する活性剤などから構成されています。

供給元

タムラ製作所など

⑤異方性導電膜(ACF)

概要

微少な半導体チップなどをはんだづけせずに接続するための素材です。エポキシ樹脂またはアクリル樹脂中に金属微粒子(フィラー)を分散させたもので、圧縮方向にのみ導通する優れものです。

供給元

デクセリアルズ(旧:ソニーケミカル)、日立化成(2020年10月より昭和電工マテリアルズに改名予定)など

最近のトピック

5G通信の実用化などにより高周波帯域での低損失化などが求められています。

ソルダーレジストや金属めっきをはじめ、このあたりの分野は非常に奥が深い分野で、それだけで何本も記事が書けてしまいそうです。今回の投稿のみでは、ほんの導入しかご説明できませんでしたので、今後別途シリーズ化できればと考えています。

長くなりましたが、今回はこのあたりで区切ります。次回はディスプレイやその他の素子についてご紹介する予定ですのでご期待ください!

関連リンク

グローバルニッチトップ企業の5年後の現状と課題(令和元年6月 経済産業省製造産業局総務課)

2019年9月11日付 日経新聞朝刊全国版 スマートフォン特集

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. ハイブリット触媒による不斉C–H官能基化
  2. 天然にある中間体から多様な医薬候補を創り出す
  3. 光刺激に応答して形状を変化させる高分子の合成
  4. 光有機触媒で開環メタセシス重合
  5. フラーレン:発見から30年
  6. 低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?…
  7. 情報の最小単位がついに原子?超次世代型メモリー誕生!
  8. GFPをも取り込む配位高分子

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【書籍】化学探偵Mr. キュリー
  2. ぬれ性・レオロジーに学ぶ! 微粒子分散系の界面化学の習得講座
  3. ニュースタッフ
  4. 第4回「YUGOKAFe」に参加しました!
  5. 人名反応に学ぶ有機合成戦略
  6. 化学のブレークスルー【有機化学編】
  7. 研究室の大掃除マニュアル
  8. トリフルオロメタンスルホン酸ベンゾイル:Benzoyl Trifluoromethanesulfonate
  9. 美しい化学構造式を書きたい方に
  10. α‐リポ酸の脂肪蓄積抑制作用を高める効果を実証

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP