[スポンサーリンク]

化学者のつぶやき

9‐Dechlorochrysophaentin Aの合成と細胞壁合成阻害活性の評価

[スポンサーリンク]

9Dechlorochrysophaentin Aとその類縁体が合成された。細胞分裂と細胞壁生合成に密接するタンパク質FtsZの局在化やDアミノ酸の取り込みを阻害することが明らかになった。

Chrysophaentins

多剤耐性菌の出現に伴い、新規抗菌薬の開発が急務となっている[1]。FtsZ*はGTPase*ドメインをもつ原核生物のタンパク質であり、細胞分裂や細胞壁生合成の中枢を担う。FtsZと細胞分裂の詳細な相関は未だ不明な点は多いものの、FtsZは新規抗菌薬の標的物質として注目されている[2]。しかし、FtsZを標的とする分子で医薬品として承認された例はない。

一方、chrysophaentinsは2010年にBewleyらによって海藻C. tayloriから単離、構造決定された化合物群である。黄色ブドウ球菌や大腸菌のFtsZのGTPase活性および重合を阻害することで高い抗菌活性を示す(図1A)。より詳細なFtsZ阻害に関する研究を通じ、chrysophaentinsが新規抗菌薬のリード化合物となると期待される。しかし、chrysophaentinsは天然からの供給が少ない上にC. tayloriの培養が困難な点が、chrysophaentins研究の進展を妨げている[3]。近年chrysophaentinsの合成研究がされてきたが、Bewleyらによるフラグメントの合成とHarrowvenらによるchrysophaentin F(混合物)の合成に限られる(図1B)[4,5]

今回、ヴァンダービルト大学のSulikowski教授らは9‐dechlorochrysophaentin A(1)とその類縁体2の合成に成功した(図1C)。FtsZ阻害剤としてよく知られるPC190723*との比較など、合成した12の生物活性を評価することで、2がchrysophaentin Aより高い阻害活性をもつことや、PC190723とは異なる表現型を有することがわかった。

図1. (A) Chrysophaentin A–D (B) これまでのchrysophaentinsの合成研究例 (C) 今回の研究

 

Synthesis of 9‐Dechlorochrysophaentin A Enables Studies Revealing Bacterial Cell Wall Biosynthesis Inhibition Phenotype in B. subtilis

Fullenkamp, C. R.; Hsu,Y.-P.; Quardokus, E. M.; Zhao, G.; Bewley, C. A.; VanNieuwenhze, M.; Sulikowski, G. A. J. Am. Chem. Soc. 2020, 142, 16161–16166.

DOI: 10.1021/jacs.0c04917

 

論文著者の紹介


研究者:Gary A. Sulikowski

研究者の経歴:

–1984 B.S., Wayne State University, USA
1984–1989 Ph.D., University of Pennsylvania, USA (Prof. Amos B. Smith, III)
1989–1991 Postdoc, Yale University, USA (Prof. Samuel J. Danishefsky)
1991–2001 Assistant Professor, Department of Chemistry, Texas A&M University, USA
2001–2004 Professor, Department of Chemistry, Texas A&M University, USA
2004– Professor, Vanderbilt University, USA

研究内容:生物活性を有する天然物の全合成、ケミカルバイオロジー


研究者:Michael VanNieuwenhze

研究者の経歴:
–1984 B.S., Kalamazoo College, USA (Prof. Thomas J. Smith)
1986–1988 M.S., Yale University, USA (Prof. Samuel J. Danishefsky)
1988–1992 Ph.D., Indiana University, USA (Prof. William R. Roush)
1992–1994 Postdoc, The Scripps Research Institute, USA (Prof. K. Barry Sharpless)
1994–2002 Discovery Chemistry Research at Eli Lilly and Company, USA
2002–2007 Assistant Professor, Department of Chemistry and Biochemistry, University of California, San Diego, USA
2007–2016 Associate Professor, Department of Chemistry, Indiana University, USA
2016– Professor, Department of Chemistry, Indiana University, USA

研究内容:細胞壁生合成を阻害するペプチド抗生物質の合成、ペプチドグリカンの合成と細菌細胞の形態学、HBVカプシドに結合するプローブの開発と抗ウイルス剤の開発

論文の概要

著者らは、閉環メタセシス(RCM)で1および2の大環状骨格を構築することを考えた(図2A)。そこで、まずレゾルシノール(3)を出発原料として、10工程でBC環フラグメント4を、4-ブロモ-3,5-ジヒドロキシ安息香酸(5)から16工程でAD環フラグメント6を合成した。得られた46を光延条件下でカップリングさせ7とした。7に対してGrubbs Z-選択的触媒[6]を作用させることでRCMが進行し大環状化合物8を得た。8をBF3·Et2O存在下反応させたところC環上C3’位とC5’位へのアルキル転位が起こり、その後イソプロピル基をBCl3で除去することで9‐dechlorochrysophaentin A(1)とiso-9‐dechlorochrysophaentin A(2)を生成比約1:1で合成した。なお、12は高速液体クロマトグラフィーにより分離できた。

合成した12は共に種々の細菌に対する抗菌活性があり、特に2S. aureusに対してchrysophaentin Aより約2倍活性が高いことがわかった(図2B)。著者らはより詳細な作用機序解明をすべく、蛍光標識されたFtsZと蛍光D-アミノ酸(FDAA*)を用いて、細胞分裂における12の影響を確認した。1および2を処理した場合、蛍光標識されたFtsZは細胞分裂部位に局在化せずに細胞全体に分散した(図 2C)。興味深いことに、既存のFtsZ阻害剤PC190723が細胞壁のペプチドグリカン生合成を阻害しない一方で、1および2は細胞壁のペプチドグリカン生合成も阻害することが明らかになった。すなわち、PC190723では細胞壁生合成が進行し蛍光D-アミノ酸(FDAA*)が細胞壁に取り込まれる様子が確認されたが、1および2では隔壁と細胞壁共に蛍光標識が確認されなかった(図2D)。また、PC190723では細胞長が伸長したが、chyrsophaentinsでは変化しなかった。これらの作用機序の詳細はまだ明らかになっておらず、今後の研究の進展が待たれる。


以上、9‐dechlorochrysophaentin A(1)とその異性体2の全合成が達成され、これら化合物のFtsZ阻害の作用機序が解明された。新規抗菌薬の開発や、細菌の細胞分裂におけるFtsZの詳細な働きを理解する分子ツールとしての応用が期待できる。

用語説明

FtsZ
原核生物の細胞分裂に必須のタンパク質である。GTPaseの一種でそれ自身が重合することでフィラメントを形成し、細胞分裂部位にリング(Zリング)を形成する。また、細胞壁生合成に関与するタンパク質を分裂部位に誘導することで細胞壁を形成する。

GTPase[7]
GTPをGDPに加水分解する酵素であり、細胞内でシグナル伝達を担う分子スイッチとして作用する。

PC190723[1]
抗菌活性を有する3-methoxy-benzamideの構造活性相関(SAR)により発見されたFtsZ阻害剤。FtsZのGTPase活性を阻害する。

FDAA[8]
Fluorescent D-Amino Acid。細胞壁のペプチドグリカン合成に関与するトランスペプチダーゼの働きによりFDAAはペプチド鎖と共有結合を形成してペプチドグリカンに組み込まれる。細胞壁生合成の様子を標識するために用いられる。

参考文献

  1. Haranahalli, K.; Tong, S.; Ojima, I. Recent Advances in the Discovery and Development of Antibacterial Agents Targeting the Cell-Division Protein FtsZ J. Med. Chem. 2016, 24, 6354–6369. DOI:10.1016/j.bmc.2016.05.003
  2. Schaffner-Barbero, C.; Martin-Fontecha, M.; Chacón, P.; Andreu, J. M. Targeting the Assembly of Bacterial Cell Division Protein FtsZ with Small Molecules. ACS Chem. Biol. 2012, 7, 269–277. DOI: 1021/cb2003626
  3. Davison, J. R.; Bewley, C. A. Antimicrobial Chrysophaentin Analogs Identified from Laboratory Cultures of the Marine Microalga Chrysophaeum taylorii. Nat. Prod. 2019, 82, 148–153. DOI: 10.1021/acs.jnatprod.8b00858
  4. Keffer, J. L.; Hammill, J. T.; Lloyd, J. R.; Plaza, A.; Wipf, P.; Bewley, C. A.; Geographic Variability and Anti-Staphylococcal Activity of the Chrysophaentins and Their Synthetic Fragments. Drugs 2012, 10, 1103–1125. DOI: 10.3390/md10051103
  5. Vendeville, J.-B.; Matters, R. F.; Chen, A.; Light, M. E.; Tizzard, G. J.; Chai, L. L.; Harrowven, D. C. A Synthetic Approach to Chrysophaentin F. Chem. Commun. 2019, 55, 4837–4840. DOI: 10.1039/c9cc01666j
  6. Herbert, M. B.; Grubbs, R. H.; Z-Selective Cross Metathesis with Ruthenium Catalysts: Synthetic Applications and Mechanistic Implications. Angew. Chem., Int. Ed. 2015, 54, 5018–5024. DOI: 10.1002/anie.201411588
  7. コスモバイオ株式会社, https://www.cosmobio.co.jp/product/detail/gtpase-atpase-scp.asp?entry_id=36774, “GTPアーゼ & ATPアーゼ(GTPase & ATPase),” 20201012参照.
  8. Hsu, Y.-P.; Booher, G.; Egan, A.; Vollmer, W.; VanNieuwenhze, M. S.; D‐Amino Acid Derivatives as in Situ Probes for Visualizing Bacterial Peptidoglycan Biosynthesis. Acc. Chem. Res. 2019, 52, 2713–2722. DOI: 10.1021/acs.accounts.9b00311
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ブロック共重合体で無機ナノ構造を組み立てる
  2. 「理研よこはまサイエンスカフェ」に参加してみた
  3. e.e., or not e.e.:
  4. ちょっとした悩み
  5. 国際化学オリンピックのお手伝いをしよう!
  6. モリブデンのチカラでニトロ化合物から二級アミンをつくる
  7. タンパク質を華麗に模倣!新規単分子クロリドチャネル
  8. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン P…

注目情報

ピックアップ記事

  1. 柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート
  2. 「サイエンスアワードエレクトロケミストリー賞」が気になったので調べてみた
  3. バイエル薬品、アスピリンをモチーフにしたTシャツをユニクロで発売
  4. OPRD誌を日本プロセス化学会がジャック?
  5. DIC岡里帆の新作CMが公開
  6. Cleavage of Carbon-Carbon Single Bonds by Transition Metals
  7. ノーベル化学賞2011候補者一覧まとめ
  8. 人名反応から学ぶ有機合成戦略
  9. 力を加えると変色するプラスチック
  10. Nature Chemistryデビュー間近!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

一塩基違いの DNA の迅速な単離: 対照実験がどのように Nature への出版につながったか

第645回のスポットライトリサーチは、東京大学大学院工学系研究科相田研究室の龚浩 (Gong Hao…

アキラル色素分子にキラル光学特性を付与するミセルを開発

第644回のスポットライトリサーチは、東京科学大学 総合研究院 応用化学系 化学生命科学研究所 吉沢…

有機合成化学協会誌2025年2月号:C–H結合変換反応・脱炭酸・ベンゾジアゼピン系医薬品・ベンザイン・超分子ポリマー

有機合成化学協会が発行する有機合成化学協会誌、2025年2月号がオンライン公開されています。…

草津温泉の強酸性硫黄泉で痺れてきました【化学者が行く温泉巡りの旅】

臭い温泉に入りたい!  というわけで、硫黄系の温泉であり、日本でも最大の自然温泉湧出量を誇る草津温泉…

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP