[スポンサーリンク]

chemglossary

陽電子放射断層撮影 Positron Emmision Tomography

[スポンサーリンク]

特定の分子性プローブを用い、生物学的過程を分子または細胞レベルで可視化する分子イメージングは、疾病の早期発見/早期検出、評価、疾病のリアルタイムモニタリング、薬効研究にとって強力なツールとなる。

現在最も高感度とされるイメージング法の一つに、陽電子放射断層撮影法 (positron emission tomography, PET)がある。これは陽電子放出核種でラベル化された分子を用い、この対消滅で放出されるγ線を検出することで、分子の3次元局在を見積もる手法である。

PETは臨床診断研究や基礎研究、ラットや霊長類を用いた前臨床試験に使われてきた。近年は、個別化医療を最終目的とした研究に用いられている。

原理

陽電子は核から放出されると、周辺の物質/細胞組織内を浮遊して、電子と対消滅する。対消滅では511 keVのエネルギーを持つ、2つのγ線が同時に正反対の方向に放出される。これをサンプル周囲に並べておいた検出器で検出する(図1)。2つの検出器が同時にガンマ線を検出した場合、対消滅はその2点を結ぶ線上で起こったことになる。これら情報蓄積から、放射線の分布を時間の関数として得ることでイメージングする。PETでは絶対単位(Bq/mL)で観測結果が得られるのも利点の一つである。

図1:PET装置の概要(Wikipediaより引用)

図1:PET装置の概要(Wikipediaより引用)

ちなみにこの陽電子浮遊距離をpositron rangeとよび、放射性核種によって異なる(図2)。これが短いほど陽電子がプローブ近傍に留まることとなり、結果としてPETの分解能は向上する。

図1:PETの原理(文献[1]より)

図2:PETの原理(文献[1]より)

PETに使用される放射性核種

PETでは、C, N, Oなど生体分子の主成分である原子を放射性核種として用いることができる(図3)。このため、ラベル化の有無で物理学的・生物学的性質に差が無い分子プローブの創製が可能となる。

PETで使用される核種の中では18Fが最も優れた物理学的性質を有している。陽電子エネルギーが最も小さく分解能が高いこと、半減期が110分と長いため、製造・運搬しやすいという利点がある。

PET_2

図3:PETに汎用される放射性核種とその物理化学的性質(文献[1]より)

18Fの分子導入の際には、オリジナル分子のHやOHをFで置き換えることが多い。原子半径がHと似ているために分子サイズの点ではほぼ同様だが、電子求引性に起因して性質が異なることがほとんどである。このようなプローブの代表例としては、[18F]6-Fluoro-L-DOPA、[18F]フルオロデオキシグルコースなどがある。

11Cは半減期が20.3 minなので、体内半減期が短い化合物のラベリングに適しており、短い間隔をあけながら連続して調査する目的に使用できる。欠点はサイクロトロンのある施設でしか使用できないことである。

分子プローブの合成戦略

PETプローブは、人体用・動物用、共に高い放射化学的純度(通常>95%)が求められ、HPLCによる生成を経て使用される。

陽電子放出核種には半減期が存在するため、高速に終了する化学反応を用い、かつ分子合成の終盤で導入を行う必要がある。理想的には、半減期の2〜3倍以内の時間で合成が完結することが望ましい。近年ではマイクロリアクターを用いることで反応速度の向上と、試薬/溶媒の減量が試みられている。

11Cラベル化では、11CH3Iを製造し、メチル化、または11C-Cカップリングを経てプローブに導入される。

18Fラベル化では、18F2に由来する18F-求電子的フッ素化が用いられる。F2は反応性が高すぎるため、求電子試薬に誘導化して用いることが多い。また、 18Fアニオンの生成を利用した求核的フッ素化も用いられる。18Fアニオンの水中での求核性は低く、求核置換反応に適さないため、アルカリ金属クリプタンド塩、または4級アンモニウム塩に変換して用いられる。

近年では陽電子を放出しない19Fを一旦ホウ素置換し、その後18Fに置き換えるという経路を実現する新しい方法論も開発されている(図4)。

sr_T_Niwa_2

図4:PETプローブ合成簡便化を指向した脱フッ素ホウ素化

 

関連書籍

[amazonjs asin=”0387403590″ locale=”JP” title=”PET: Molecular Imaging and Its Biological Applications”][amazonjs asin=”4320057937″ locale=”JP” title=”脳のイメージング (ブレインサイエンス・レクチャー)”]

関連文献

  1. “Molecular Imaging with PET” Ametamey, S. M.; Honer, M.; Schubiger, P. A.  Chem. Rev. 2008, 108, 1501. DOI: 10.1021/cr0782426

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 多成分連結反応 Multicomponent Reaction…
  2. 機能指向型合成 Function-Oriented Synthe…
  3. ケミカルバイオロジー chemical biology
  4. 国連番号(UN番号)
  5. 指向性進化法 Directed Evolution
  6. 真空ポンプ
  7. 特殊ペプチド Specialty Peptide
  8. ビオチン標識 biotin label

注目情報

ピックアップ記事

  1. tert-ブトキシカルボニル保護基 Boc Protecting Group
  2. 島津製作所がケムステVシンポに協賛しました
  3. 有機合成化学協会誌2017年7月号:有機ヘテロ化合物・タンパク質作用面認識分子・Lossen転位・複素環合成
  4. トロスト酸化 Trost Oxidation
  5. 良質な論文との出会いを増やす「新着論文リコメンデーションシステム」
  6. 日本化学会と対談してきました
  7. カリカリベーコンはどうして美味しいにおいなの?
  8. あなたはどっち? 絶対立体配置
  9. GlycoProfile アジド糖
  10. AI時代を経て見えてきた “研究者の転職の新基準” —「何を問うか」「どうつなぐか」「どう学び直すか」—

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP