[スポンサーリンク]

化学者のつぶやき

π⊥ back bonding; 逆供与でπ結合が強くなる?!

遷移金属錯体中では、金属―配位子間に電子相互作用が見られます。


まず、配位子から金属への電子供与にはσ性とπ性のものがあり、中心金属の主に空のd軌道へ電子を「供与」します。一方、配位子の反結合性π*(もしくは空のp)軌道に対して、d電子が金属から「逆供与」される相互作用も見られます。
(π錯体において)「Dewar-Chatt-Duncansonモデル」とよばれるこの電子の「供与・逆供与」は、錯体分子全体の立体や化学的性質を理解する際、または触媒系の中間体等を予想する際に非常に重要です。

一般に、逆供与は「配位子(反結合性軌道)←金属(d電子)」と上述しましたが、もし配位子がアルキンのジカチオンだった場合、金属―配位子間の相互作用はどのように予想できるでしょうか?

rk122712-0.jpg
上の図の通り、ジボレンは、アルキンジカチオン種の等電子体です。
ごく最近、このジボレンを配位子とする白金錯体が合成され、そこでは「Dewar-Chatt-Duncansonモデル」を覆す「金属から配位子の結合性軌道への電子供与」が存在することが明らかにされたので紹介します。

Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, Alfredo Vargas, Nature Chemistry (2012) ASAP doi:10.1038/nchem.1520

著者らが用いたジボレン-白金錯体 3の合成法は、二段階のシンプルなもの。まず0価のPt(PEt3)3と二当量のジブロモジボランを反応させることで二価の白金錯体 2を合成し、それをマグネシウム錯体を用いて還元することで粗収率99%の紫色結晶として3を得ています。

rk122712-1.jpg
rk122712-2.jpg興味深いことに、X線による3の分子構造解析の結果、R-B-B-R骨格がほぼ直線(~170°)で、ホウ素―ホウ素結合長が、フリーなジボレンの二重結合長(計算により決定)とほぼ同じ長さであることがわかったのです。

通常、π錯体の場合、配位子のπ結合性軌道にある電子が金属側へ、同時に金属側から配位子の反結合性π軌道へ電子が流れ込むため、フリーな配位子と比べ、結合長は伸長するもの。
化合物3の分子構造に見られるこのような特徴を、著者らは分子軌道の視点から次のように説明しています。

rk122712-3.jpg
すなわち、ジボレンには空の結合性π軌道があるため、金属からこの結合性π軌道への逆供与が起こり得る(上図 vii)、と。
また興味深いことに、この結合性軌道への金属→配位子逆供与に対応する分子軌道は、ジボレンπ電子→金属の供与に相当するHOMOよりもエネルギー的に低いことが明らかにされています(注* 下図ではPtの代わりにPdでも同様の相互作用が見られることを示している)。

rk122712-4.jpg
論文中で著者らはこの相互作用のことを「π⊥ back-bonding」と呼ぼう!と提案しています。

ただ、これ、形式的な見方によっては、まずPt錯体からジボレンへ二電子移動が起こって発生したジボレンジアニオン種が、二価のPtに対してアルキン錯体の場合と同様の相互作用をしてる、という風にも捉えることができるかもしれません。結果というか、分子軌道の状態は変わりませんが、解釈しやすいかと。

なにはともあれ、ただ単に未開拓な反応を検討して新規化合物を合成するだけではなく、そこから新しいコンセプトを導き出して売り出す手法は見習いたいものです。

それにしてもこのグループ、強いなぁ・・

記事中の図は原著論文より引用

引用文献

[1] Gernot Frenking, Nikolaus Fröhlich, Chem. Rev.2000100, 717, DOI: 10.1021/cr980401l
[2] Jürgen Bauer, Holger Braunschweig, Rian D. Dewhurst, Chem. Rev.2012112, 4329, DOI: 10.1021/cr3000048
[3] B. Holger Group

参考書籍

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. アメリカで Ph.D. を取る –結果発表ーッの巻–
  2. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  3. ChemDrawの使い方【作図編③:表】
  4. PACIFICHEM2010に参加してきました!④
  5. Chemistry Reference Resolverをさらに…
  6. 電子雲三次元ガラス彫刻NEBULAが凄い!
  7. 光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合…
  8. お”カネ”持ちな会社たち-1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ロッセン転位 Lossen Rearrangement
  2. ノーベル化学賞・下村さん帰国
  3. エンインメタセシス Enyne Metathesis
  4. π拡張ジベンゾ[a,f]ペンタレン類の合成と物性
  5. Gabriel試薬類縁体
  6. 博士後期で学費を企業が肩代わり、北陸先端大が国内初の制度
  7. THE PHD MOVIE
  8. トリス[2-(ジメチルアミノ)エチル]アミンを用いた原子移動ラジカル重合
  9. 光学分割 / optical resolution
  10. 第24回 化学の楽しさを伝える教育者 – Darren Hamilton教授

関連商品

注目情報

注目情報

最新記事

ジアゾニウム塩が開始剤と捕捉剤を“兼務”する

アリールジアゾニウム塩を用いたプレニルカルバマート/ウレアのシクロアミノジアゾ化反応が開発された。入…

パラジウム光触媒が促進するHAT過程:アルコールの脱水素反応への展開

2016年、イリノイ大学シカゴ校・Vladimir Gevorgyanらは、Pd(0)触媒の共存下、…

ウラジミール・ゲヴォルギャン Vladimir Gevorgyan

ウラジミール・ゲヴォルギャン(Vladimir Gevorgyan、1956年8月12日-)は、アメ…

有機合成化学協会誌2018年11月号:オープンアクセス・英文号!

有機合成化学協会が発行する有機合成化学協会誌、2018年11月号がオンライン公開されました。今月…

観客が分泌する化学物質を測定することで映画のレーティングが可能になるかもしれない

映画には、年齢による鑑賞制限が設けられているものがあります。その制限は映画の内容に応じて各国の審査団…

庄野酸化 Shono Oxidation

概要アルコール溶媒中にアミドまたはカルバメートを電解酸化し、N,O-アセタールを得る反応。アミン…

PAGE TOP