[スポンサーリンク]

化学者のつぶやき

π⊥ back bonding; 逆供与でπ結合が強くなる?!

[スポンサーリンク]

遷移金属錯体中では、金属―配位子間に電子相互作用が見られます。


まず、配位子から金属への電子供与にはσ性とπ性のものがあり、中心金属の主に空のd軌道へ電子を「供与」します。一方、配位子の反結合性π*(もしくは空のp)軌道に対して、d電子が金属から「逆供与」される相互作用も見られます。
(π錯体において)「Dewar-Chatt-Duncansonモデル」とよばれるこの電子の「供与・逆供与」は、錯体分子全体の立体や化学的性質を理解する際、または触媒系の中間体等を予想する際に非常に重要です。

一般に、逆供与は「配位子(反結合性軌道)←金属(d電子)」と上述しましたが、もし配位子がアルキンのジカチオンだった場合、金属―配位子間の相互作用はどのように予想できるでしょうか?

rk122712-0.jpg
上の図の通り、ジボレンは、アルキンジカチオン種の等電子体です。
ごく最近、このジボレンを配位子とする白金錯体が合成され、そこでは「Dewar-Chatt-Duncansonモデル」を覆す「金属から配位子の結合性軌道への電子供与」が存在することが明らかにされたので紹介します。

Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, Alfredo Vargas, Nature Chemistry (2012) ASAP doi:10.1038/nchem.1520

著者らが用いたジボレン-白金錯体 3の合成法は、二段階のシンプルなもの。まず0価のPt(PEt3)3と二当量のジブロモジボランを反応させることで二価の白金錯体 2を合成し、それをマグネシウム錯体を用いて還元することで粗収率99%の紫色結晶として3を得ています。

rk122712-1.jpg
rk122712-2.jpg興味深いことに、X線による3の分子構造解析の結果、R-B-B-R骨格がほぼ直線(~170°)で、ホウ素―ホウ素結合長が、フリーなジボレンの二重結合長(計算により決定)とほぼ同じ長さであることがわかったのです。

通常、π錯体の場合、配位子のπ結合性軌道にある電子が金属側へ、同時に金属側から配位子の反結合性π軌道へ電子が流れ込むため、フリーな配位子と比べ、結合長は伸長するもの。
化合物3の分子構造に見られるこのような特徴を、著者らは分子軌道の視点から次のように説明しています。

rk122712-3.jpg
すなわち、ジボレンには空の結合性π軌道があるため、金属からこの結合性π軌道への逆供与が起こり得る(上図 vii)、と。
また興味深いことに、この結合性軌道への金属→配位子逆供与に対応する分子軌道は、ジボレンπ電子→金属の供与に相当するHOMOよりもエネルギー的に低いことが明らかにされています(注* 下図ではPtの代わりにPdでも同様の相互作用が見られることを示している)。

rk122712-4.jpg
論文中で著者らはこの相互作用のことを「π⊥ back-bonding」と呼ぼう!と提案しています。

ただ、これ、形式的な見方によっては、まずPt錯体からジボレンへ二電子移動が起こって発生したジボレンジアニオン種が、二価のPtに対してアルキン錯体の場合と同様の相互作用をしてる、という風にも捉えることができるかもしれません。結果というか、分子軌道の状態は変わりませんが、解釈しやすいかと。

なにはともあれ、ただ単に未開拓な反応を検討して新規化合物を合成するだけではなく、そこから新しいコンセプトを導き出して売り出す手法は見習いたいものです。

それにしてもこのグループ、強いなぁ・・

記事中の図は原著論文より引用

引用文献

[1] Gernot Frenking, Nikolaus Fröhlich, Chem. Rev.2000100, 717, DOI: 10.1021/cr980401l
[2] Jürgen Bauer, Holger Braunschweig, Rian D. Dewhurst, Chem. Rev.2012112, 4329, DOI: 10.1021/cr3000048
[3] B. Holger Group

参考書籍

関連記事

  1. アルドール・スイッチ Aldol-Switch
  2. 分子模型を比べてみた
  3. 天然にある中間体から多様な医薬候補を創り出す
  4. もう別れよう:化合物を分離・精製する|第5回「有機合成実験テクニ…
  5. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウ…
  6. 嵩高い非天然α,α-二置換アミノ酸をさらに嵩高くしてみた
  7. 高分子と高分子の反応も冷やして加速する
  8. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻– (実践編)
  2. 最強の文献管理ソフトはこれだ!
  3. フッ素のゴーシュ効果 Fluorine gauche Effect
  4. GRE Chemistry 受験報告 –試験対策編–
  5. 化学者のためのエレクトロニクス講座~無線の歴史編~
  6. 研究者・開発者に必要なマーケティング技術と活用方法【終了】
  7. 第27回 「有機化学と光化学で人工光合成に挑戦」今堀 博 教授
  8. マテリアルズ・インフォマティクスの推進を加速させるためには?
  9. 第七回 生命を化学する-非ワトソン・クリックの世界を覗く! ー杉本直己教授
  10. バニリン /Vanillin

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP