[スポンサーリンク]

化学者のつぶやき

η6配位アルキルベンゼンで全炭素(3+2)環化付加

[スポンサーリンク]

ロジウム触媒を用いたアルキルベンゼンと電子不足オレフィンの全炭素(3+2)環化付加反応が開発された。様々な天然物に含まれるジヒドロインデン骨格を簡便かつ高い原子効率で構築できる。

アルキルベンゼンの(3+2)環化付加反応

(3+2)環化付加反応は、1,3-双極子と不飽和結合から高度に官能基化された五員環を構築できる強力な手法である(図1A)[1]。ところが、これまで報告されてきた1,3-双極子はほとんどがヘテロ原子を有しており、全炭素1,3-双極子を用いた例は少ない。一方で遷移金属触媒は、四員環メタラサイクルや金属カルベノイドなどの特異な全炭素双極子やその等価体を生成できる[2]。特にh3配位により生じたトリメチレンメタン錯体は、1,3-双極子として(3+2)環化付加反応を起こす。その代表例として、Trostらが開発したパラジウム触媒を用いたトリメチレンメタンの環化付加反応が知られる(図1B)[3]。本反応では、π-アリルパラジウム錯体の正電荷が脱シリル化により生じた負電荷を安定化する。

以前筆者らは、Rh(III)触媒のh6配位によりアルキルベンゼンのベンジル位が脱プロトン化し、生じたh5-メチレンシクロヘキサジエニル種が電子不足オレフィンに求核付加することを見いだした[4]。一方Cp*Ir錯体にh4配位したo-キノンメチドはN-メチルマレイミドと(3+2)環化付加することが知られており、通常求電子的な3位がh4配位によって求核的な反応性を示す(図1C)[5]。しかし、Rh錯体では同様な反応は進行していない。今回著者らは、配位子の変更によりh5-メチレンシクロヘキサジエニル種が求核剤でなく1,3-双極子として振る舞うことを期待した。実際、適切な配位子をもつRh錯体を用いることでアルキルベンゼンと電子不足オレフィンとの(3+2)環化付加を達成した(図1D)。

図1. (A) 全炭素(3+2)環化付加 (B) 3配位を用いた全炭素1,3-双極子 (C) Ir錯体を用いたo-キノンメチドの(3+2)環化付加 (D) 今回の反応

 

“Catalytic Dehydrogenative (3+2) Cycloaddition of Alkylbenzenes via π-Coordination”

Wu, W.-Q.; Lin, Y.; Li, Y.; Shi, H. J. Am. Chem. Soc.2023, 145, 9464–9470.

DOI: 10.1021/jacs.3c02900

論文著者の紹介

研究者:Hang Shi (石 航) (研究室HP)

研究者の経歴:

–2008                   B.Sc., Hunan University, China
2008–2013 Ph.D., Peking University, China (Prof. Zhen Yang)
2013–2015 Postdoc, Harvard University, USA (Prof. Tobias Ritter)
2015–2018 Postdoc, The Scripps Research Institute, USA (Prof. Jin-Quan Yu)
2018–2023 Assistant Professor, Westlake University, China
2023–                     Associate Professor, Westlake University, China

研究内容:h6配位による芳香環の触媒的官能基化、不斉金属触媒を用いたアミン合成、機能性分子の合成

論文の概要

2,5-ビス(トリフルオロメチル)フェニル基が置換したCp*を配位子にもつロジウム触媒存在下、HFIP中、AgBF4を添加すると、120 °Cでアルキルベンゼン1と1,1-ビス(フェニルスルホニル)エチレン(2)から環化体3が良好な収率で得られた(図2A)。本反応は多様な官能基を有するアルキルベンゼン1a–1eに適用でき、対応する環化体3a–3eを中程度から高い収率で与えた。また2-ナフチル基をもつ1fでは、ベンゼン環側で選択的に環化し二環式化合物3fを与える。さらに4級炭素の構築も可能で、スピロ環化体3hやジアリール3iが得られた。

次に、Cp*Rh錯体に配位したh5-メチレンシクロヘキサジエニル種が1,3-双極子としての性質をもつか確かめるため、電荷密度と分子軌道を計算した(図2B)。その結果、ベンジル位とオルト位は負に帯電しており、イプソ位は正の電荷をもつことがわかった。また、HOMOは主にベンジル位に分布している一方で、LUMOの一部はオルト位に局在化していた。これらの性質は代表的な1,3-双極子であるジアゾメタンに酷似している。

また、反応経路をDFT計算により解析した(図2C)。まず、脱プロトン化により生じたh5-メチレンシクロヘキサジエニル-Rh錯体Int1に対し、2が段階的に付加し、h5-メチレンシクロヘキサジエニル錯体Int3を形成する。続く再芳香族化において、Int3からのヒドリド移動は活性化エネルギーが非常に大きく、h3錯体Int4を経由することが示唆された。アゴスティック相互作用によるInt4の安定化が、ヒドリド移動の鍵であった。そして、TS4を経て再芳香族化し環化体3が得られる。

図2. (A) 最適条件と基質適用範囲 (B) π配位したベンジルカルボアニオンの電荷密度と分子軌道 (C) (3+2)環化付加と再芳香族化における 自由エネルギーの計算値 (kJ/mol) (図2は一部論文SIより転載)

 

以上、アルキルベンゼンを1,3-双極子として用いた全炭素(3+2)環化付加反応が開発された。得られた環化体は様々なインデン誘導体へと変換でき、本反応の天然物合成への応用が期待される。

参考文献

  1. (a) Gothelf, K. V.; Jørgensen, K. A. Asymmetric 1,3-Dipolar Cycloaddition Reactions.Chem. Rev. 1998, 98, 863–910. DOI: 10.1021/cr970324e (b) Wang, Z.; Liu, J. All-Carbon (3+2) Cycloaddition in Natural Product Synthesis. Beilstein J. Org. Chem. 2020, 16, 3015–3031. DOI: 10.3762/bjoc.16.251
  2. Lautens, M.; Klute, W.; Tam, W. Transition Metal-Mediated Cycloaddition Reactions. Chem. Rev. 1996, 96, 49–92. DOI: 10.1021/cr950016l
  3. Trost, B. M. [3+2] Cycloaddition Approaches to Five-Membered Rings via Trimethylenemethane and Its Equivalents. Chem., Int. Ed. 1986, 25, 1−20. DOI: 10.1002/anie.198600013
  4. (a) Kang, Q.; Li, Y.; Chen, K.; Zhu, H.; Wu, W.; Lin, Y.; Shi, H. Rhodium‐Catalyzed Stereoselective Deuteration of Benzylic C–H Bonds via Reversible h6Angew. Chem., Int. Ed. 2022, 61, e202117381. DOI: 10.1002/anie.202117381 (b) Li, Y.; Wu, W.; Zhu, H.; Kang, Q.; Xu, L.; Shi, H. Rhodium‐Catalyzed Benzylic Addition Reactions of Alkylarenes to Michael Acceptors. Angew. Chem., Int. Ed. 2022, 61, e202207917. DOI: 10.1002/anie.202207917
  5. (a) Amouri, H.; Vaissermann, J.; Rager, M. N.; Grotjahn, D. B. Stable o-Quinone Methide Complexes of Iridium: Synthesis, Structure, and Reversed Reactivity Imparted by Metal Complexation. Organometallics 2000, 19, 1740− DOI: 10.1021/om000073r (b) Amouri, H.; Vaissermann, J.; Rager, M. N.; Grotjahn, D. B. Rhodium-Stabilized o-Quinone Methides: Synthesis, Structure, and Comparative Study with Their Iridium Congeners. Organometallics 2000, 19, 5143−5148. DOI: 10.1021/om0005598
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明
  2. 有機化学系ラボで役に立つ定番グッズ?100均から簡単DIYまで
  3. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  4. ルドルフ・クラウジウスのこと① エントロピー150周年を祝って
  5. Dead Endを回避せよ!「全合成・極限からの一手」④(解答編…
  6. 研究者へのインタビュー
  7. 大量合成も可能なシビれる1,2-ジアミン合成法
  8. IKCOC-15 ー今年の秋は京都で国際会議に参加しよう

注目情報

ピックアップ記事

  1. グラフェンの量産化技術と次世代デバイスへの応用【終了】
  2. グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応
  3. iPadで計算化学にチャレンジ:iSpartan
  4. 令和元年度 のPRTR データが公表~第一種指定化学物質の排出量・移動量の集計結果~
  5. 酢酸ビニル (vinyl acetate)
  6. ほぅ、そうか!ハッとするC(sp3)–Hホウ素化
  7. オペレーションはイノベーションの夢を見るか? その2
  8. 高峰譲吉の墓
  9. ケムステが文部科学大臣表彰 科学技術賞を受賞しました
  10. 第20回ケムステVシンポ『アカデミア創薬 A to Z』を開催します!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP