[スポンサーリンク]

ケムステニュース

“加熱しない”短時間窒化プロセスの開発 -チタン合金の多機能化を目指して-

[スポンサーリンク]

静岡大学工学部の菊池将一准教授、東京電機大学の井尻政孝助教、ヤマハ発動機材料技術部からなる共同研究グループは6月30日、加熱することなくチタン合金表面に硬質な窒化層を短時間で形成させることに成功したと発表した。 (引用:6月30日Response)

金属材料によってはその表面を処理することで材料の性能が向上し、応用できる範囲を拡大することができます。今回紹介するのは表面処理の一つである窒化処理において、加熱が必要ない新しい方法を開発したというニュースです。

チタン合金は軽くて強くて錆びない材料として、自動車や航空機などいろいろな分野で使われています。

チタン合金が使われている航空機エンジンのファンブレード

しかし、摩擦摩耗特性に乏しい(金属同士の接触で表面が削れやすい)ため、表面を窒化処理してTiNを形成することが行われています。一般的な窒化処理は、チタン合金をアンモニアガス雰囲気下で900度に加熱して行われてますが、加熱することで結晶粒が粗大化するため強度が低下してしまう欠点がありました。温度を下げると窒素のチタン合金中での拡散速度も低下するため、低温でも効率よく窒化処理できるプロセスの開発が求められていました。

プラズマ窒化処理の一例

そこで本研究では、窒化処理した純チタン微粒子をチタン合金に高速投射することで室温でも窒化処理ができることを発見しました。具体的には、プラズマ窒化処理を施した25.6 µmのチタン微粒子を3mmのノズルから0.5 MPaの圧力で撃ち出し、Ti–6Al–4Vというタイプのチタン合金に衝突させました。結果、撃ち出す時間を長くするほど、チタン合金表面の窒素は増え、室温での窒化処理を確認しました。窒化処理された表面付近は、この処理をしていないチタン合金と比べてアルミニウムやバナジウムが少なく検出されたため、撃ち込んだチタン微粒子のTiNがチタン合金に移った推測されています。

(a)実験の模式図 (b)表面処理後の表面の窒素の分布 (c)10秒の撃ち出し前と後の断面の元素分布の比較(出典:原著論文

次に窒化処理の化学結合を調べるためにXPSを測定しました。撃ち出す時間を長くするほど、窒化物由来の窒素1s軌道のピークが大きくなったことから窒化処理をしたチタン微粒子の高速投射によって窒化処理が進んだことが確認されました。

撃ち出し時間別のXPSスペクトル (a)深さプロファイル (b)深さごとのN 1s付近のスペクトル (c)深さごとの Ti 2p付近のスペクトル(出典:原著論文

次に窒化効率をこの方法と従来の方法で比較するために、TiNの膜厚を処理時間で比較しました。

TiN層の厚さの比較、赤線が本研究の結果を元にした近似曲線で、オレンジ色の点線が従来の熱拡散での近似直線(出典:原著論文

従来の900度における窒素の拡散速度は、この系に合わせると0.19 µm s−1/2見積もられている一方、窒化処理した純チタン粒子の高速投射では、単調増加ではなくTiN層の成長速度がだんだん遅くなることが分かりました。この違いは、処理の違い、窒素の拡散か微粒子衝突処理に起因していると本文中では考察しています。またチタン粒子の微粒子衝突処理時間が長くなるとTiNの膜厚が増加しないことについて、チタン合金の表面がTiNに変化することでより硬くなり、チタン粒子の衝突に強くなったと主張しています。その裏付けとしてビッカース硬さ試験において、チタン粒子の高速投射で処理をするとより硬くなったと示しています。

最後に微細構造を調べるために電子線後方散乱回折法とSTEMによる観察を行いました。電子線後方散乱回折法のIPFとIQマップからは、表面において大きな結晶の証拠は確認されませんでした。STEMでは、表面処理の影響が少ないところでは結晶粒が粗い一方、表面処理付近では細かい結晶粒が確認され、これは再結晶かGrain subdivision機構と呼ばれる結晶が細かく分断されて行く過程で形成されたと推測しています。

電子線後方散乱回折法による(a) IPFマップ, (b) IQ map, (c) SEM画像,(d) 断面のSTEM画像(出典:原著論文

機械強度についても測定を行っており、従来の窒化処理や窒化処理をしていないサンプルよりも高い性能を示すことが確認されました。結論として窒化処理した純チタン粒子の高速投射によって室温での窒化処理に成功しました。特筆すべき点は窒化効率の高さであり、室温であっても窒化速度は、900度の熱拡散よりも早くそのため大きな結晶成長を抑え、チタン合金の強度を向上につながっているとしています。

室温で窒化処理ができるとなると研究の目的である強度の向上だけでなく、窒化処理の応用場面が広がると思いました。高温にする以上、温度に弱い加工・処理はこの窒化処理の後になっているわけであり、この開発された方法を使えば、チタン合金の組み立て後に窒化処理ができるようになり、製品の応用が広がるか製造プロセスにメリットができるかもしれません。窒化金属は他にもあり、クロムなども同様の方法で窒化すると何かメリットがあるのか気になるところです。研究チームにはヤマハ発動機材料技術部も入っているため、バイク部品などへの応用も検討されているかもしれません。

関連書籍

[amazonjs asin=”4339046140″ locale=”JP” title=”軽合金材料”] [amazonjs asin=”4816361561″ locale=”JP” title=”最新 熱処理のしくみと技術”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 米デュポンの7-9月期、ハリケーン被害などで最終赤字
  2. JAMSTEC、深度1万900mに棲むエビから新酵素を発見 &#…
  3. 劣性遺伝子押さえ込む メンデルの法則仕組み解明
  4. ヤンセン 新たな抗HIV薬の製造販売承認を取得
  5. 信越化学、排水・排ガスからの塩水回収技術を開発
  6. メラノーマ治療薬のリード化合物を発見
  7. オルト−トルイジンと発がんの関係
  8. 05年:石油化学は好調、化工全体では利益縮小

注目情報

ピックアップ記事

  1. 第11回 慶應有機化学若手シンポジウム
  2. 三菱化学が有機太陽電池事業に参入
  3. マイクロリアクターで新時代!先取りセミナー 【終了】
  4. イトムカ鉱山
  5. 十全化学株式会社ってどんな会社?
  6. 【予告】ケムステ新コンテンツ『CSスポットライトリサーチ』
  7. Lead Optimization for Medicinal Chemists
  8. 化学企業のグローバル・トップ50が発表【2022年版】
  9. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  10. E. J. Corey からの手紙

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP