[スポンサーリンク]

ケムステニュース

“加熱しない”短時間窒化プロセスの開発 -チタン合金の多機能化を目指して-

[スポンサーリンク]

静岡大学工学部の菊池将一准教授、東京電機大学の井尻政孝助教、ヤマハ発動機材料技術部からなる共同研究グループは6月30日、加熱することなくチタン合金表面に硬質な窒化層を短時間で形成させることに成功したと発表した。 (引用:6月30日Response)

金属材料によってはその表面を処理することで材料の性能が向上し、応用できる範囲を拡大することができます。今回紹介するのは表面処理の一つである窒化処理において、加熱が必要ない新しい方法を開発したというニュースです。

チタン合金は軽くて強くて錆びない材料として、自動車や航空機などいろいろな分野で使われています。

チタン合金が使われている航空機エンジンのファンブレード

しかし、摩擦摩耗特性に乏しい(金属同士の接触で表面が削れやすい)ため、表面を窒化処理してTiNを形成することが行われています。一般的な窒化処理は、チタン合金をアンモニアガス雰囲気下で900度に加熱して行われてますが、加熱することで結晶粒が粗大化するため強度が低下してしまう欠点がありました。温度を下げると窒素のチタン合金中での拡散速度も低下するため、低温でも効率よく窒化処理できるプロセスの開発が求められていました。

プラズマ窒化処理の一例

そこで本研究では、窒化処理した純チタン微粒子をチタン合金に高速投射することで室温でも窒化処理ができることを発見しました。具体的には、プラズマ窒化処理を施した25.6 µmのチタン微粒子を3mmのノズルから0.5 MPaの圧力で撃ち出し、Ti–6Al–4Vというタイプのチタン合金に衝突させました。結果、撃ち出す時間を長くするほど、チタン合金表面の窒素は増え、室温での窒化処理を確認しました。窒化処理された表面付近は、この処理をしていないチタン合金と比べてアルミニウムやバナジウムが少なく検出されたため、撃ち込んだチタン微粒子のTiNがチタン合金に移った推測されています。

(a)実験の模式図 (b)表面処理後の表面の窒素の分布 (c)10秒の撃ち出し前と後の断面の元素分布の比較(出典:原著論文

次に窒化処理の化学結合を調べるためにXPSを測定しました。撃ち出す時間を長くするほど、窒化物由来の窒素1s軌道のピークが大きくなったことから窒化処理をしたチタン微粒子の高速投射によって窒化処理が進んだことが確認されました。

撃ち出し時間別のXPSスペクトル (a)深さプロファイル (b)深さごとのN 1s付近のスペクトル (c)深さごとの Ti 2p付近のスペクトル(出典:原著論文

次に窒化効率をこの方法と従来の方法で比較するために、TiNの膜厚を処理時間で比較しました。

TiN層の厚さの比較、赤線が本研究の結果を元にした近似曲線で、オレンジ色の点線が従来の熱拡散での近似直線(出典:原著論文

従来の900度における窒素の拡散速度は、この系に合わせると0.19 µm s−1/2見積もられている一方、窒化処理した純チタン粒子の高速投射では、単調増加ではなくTiN層の成長速度がだんだん遅くなることが分かりました。この違いは、処理の違い、窒素の拡散か微粒子衝突処理に起因していると本文中では考察しています。またチタン粒子の微粒子衝突処理時間が長くなるとTiNの膜厚が増加しないことについて、チタン合金の表面がTiNに変化することでより硬くなり、チタン粒子の衝突に強くなったと主張しています。その裏付けとしてビッカース硬さ試験において、チタン粒子の高速投射で処理をするとより硬くなったと示しています。

最後に微細構造を調べるために電子線後方散乱回折法とSTEMによる観察を行いました。電子線後方散乱回折法のIPFとIQマップからは、表面において大きな結晶の証拠は確認されませんでした。STEMでは、表面処理の影響が少ないところでは結晶粒が粗い一方、表面処理付近では細かい結晶粒が確認され、これは再結晶かGrain subdivision機構と呼ばれる結晶が細かく分断されて行く過程で形成されたと推測しています。

電子線後方散乱回折法による(a) IPFマップ, (b) IQ map, (c) SEM画像,(d) 断面のSTEM画像(出典:原著論文

機械強度についても測定を行っており、従来の窒化処理や窒化処理をしていないサンプルよりも高い性能を示すことが確認されました。結論として窒化処理した純チタン粒子の高速投射によって室温での窒化処理に成功しました。特筆すべき点は窒化効率の高さであり、室温であっても窒化速度は、900度の熱拡散よりも早くそのため大きな結晶成長を抑え、チタン合金の強度を向上につながっているとしています。

室温で窒化処理ができるとなると研究の目的である強度の向上だけでなく、窒化処理の応用場面が広がると思いました。高温にする以上、温度に弱い加工・処理はこの窒化処理の後になっているわけであり、この開発された方法を使えば、チタン合金の組み立て後に窒化処理ができるようになり、製品の応用が広がるか製造プロセスにメリットができるかもしれません。窒化金属は他にもあり、クロムなども同様の方法で窒化すると何かメリットがあるのか気になるところです。研究チームにはヤマハ発動機材料技術部も入っているため、バイク部品などへの応用も検討されているかもしれません。

関連書籍

[amazonjs asin=”4339046140″ locale=”JP” title=”軽合金材料”] [amazonjs asin=”4816361561″ locale=”JP” title=”最新 熱処理のしくみと技術”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 冬のナノテク関連展示会&国際学会情報
  2. 2011年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  3. 化学者のランキング指標「h-index」 廃止へ
  4. 可視光全域を利用できるレドックス光増感剤
  5. 夏の必需品ー虫除けスプレーあれこれ
  6. パーデュー大、10秒で爆薬を検知する新システムを開発
  7. 変わりゆく化学企業の社名
  8. 国際化学オリンピック、日本の高校生4名「銀」獲得

注目情報

ピックアップ記事

  1. 2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~
  2. 研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話
  3. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Part IV
  4. 【イベント】「化学系学生のための企業研究セミナー」「化学系女子学生のためのキャリアセミナー」
  5. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎と実験データの把握-
  6. トリフルオロメタンスルホン酸ランタン(III):Lanthanum(III) Trifluoromethanesulfonate
  7. ケムステ版・ノーベル化学賞候補者リスト【2022年版】
  8. ストリゴラクトン類縁体の構造活性相関研究 ―海外企業ポスドク―
  9. グサリときた言葉
  10. テトラキス(トリフェニルアセタート)ジロジウム(II):Tetrakis(triphenylacetato)dirhodium(II)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP