[スポンサーリンク]

化学者のつぶやき

固体なのに動くシャトリング分子

ロタキサンのシャトリング

ロタキサンとは、一般的に棒状分子がリング状分子の輪の中を通り、棒状分子の両端が大きな分子(ストッパー)で固定されている超分子のことを言います。ロタキサンの特徴としてリング状分子が棒状分子上の2つの認識サイト間を移動する、つまりシャトリング分子として働くことが知られています。うまく設計したリング状分子と棒状分子を使えば、リング状分子の「動」と「静」や、2つの異なる認識部位をデジタル信号の「0」、「1」と見立てたスイッチングが理論的には可能です。このようなロタキサンを使ったシャトリング分子は1991年Stoddartらによって初めて合成されました [1] (図 1)。Stoddartらは温度可変NMR測定により、20 ℃においてはリング状分子が2つの認識サイト間を動き–50 ℃では停止するといった溶液中での分子シャトリングを実現しました。その後、pH応答[2]、光応答[3]、認識サイトの酸化還元応答のシャトリング分子[4]などが設計・合成されています。

 

2015-06-07_01-24-12

図1 ロタキサンによる分子シャトリング

 

さて、一見するとロタキサンを用いたシャトリング分子の合成は2000年代初頭には確立したように思えます。しかし、これまでに報告されたロタキサンのシャトリングや回転運動は全て溶液中での観測であり、実際にこの科学を高密度な分子素子や分子スイッチなどの材料として応用することを考えると固体中での高密度な運動が求められます[5]。最近、ようやく固体中(MOF中)で分子シャトリングを実現した研究結果がウィンザー(Windsor)大学のLoebらによって報告されましたので紹介したいと思います。

 

“A molecular shuttle that operates inside a metal–organic framework”

Zhu, K.; O’Keefe, C. A.; Vukotic, V. N.; Schurko, R. W.; Loeb, S. J. Nature Chem. 2015, 7, 514. DOI: 10.1038/nchem.2258

 

固体中での分子シャトリング成功の秘訣

固体中でロタキサンが動かない理由は、固体状態ではロタキサン同士が水素結合や分子間力で密にパッキングされており、リング状分子の動きが阻害されているからです。一方、溶液中では分散するため分子の自由度が高く、その結果、シャトリングが高速で進行し、それを観測可能となります。そのため固体中でのロタキサンの運動を誘発するためには固体結晶中にリング状分子が動くことができる「空孔」が必要となります。

そのためLoebらは、ロタキサンと空孔をMOFで作り出すことを考えました。これが固体中における分子シャトリングを成功に導いた秘訣です。

実際、2003年ロタキサンを含むMOFであるMORFの合成に成功しています[6]MORFのX線単結晶構造解析から、ロタキサンがMOF中に含まれていることを確認しています。また、2012年には、2つのベンゼンジカルボン酸部位の間にクラウンエーテルを導入した1を合成しました。Loebらは1とCu(NO3)2・3H2Oを用いて錯体を形成させ、MOFであるUWDM-1をつくりました。UWDM-1を使ってロタキサン中のクラウンエーテルの回転を固体NMRによって観測することに成功しています[7]。さらに、2014年には亜鉛を用いたMOFに2を含ませたUWDM-2及びUWDM-3を調製し、両者のリング状分子の回転運動を固体NMRによって観測していています[8]。そして、今回はより空孔が広いUWDM-4を調製し、MOF中でのシャトリング観測を試みました(図2)。

 

2015-06-07_02-23-15

図2 MOF+ロタキサン

 

MOF中でのシャトリング分子のデザインと合成戦略

MOF中でのシャトリング分子を設計するキーポイントは次の2つ。

  • リング状分子の運動に必要な結合能の高い認識サイトを2箇所導入すること
  • ロタキサンのリング状分子が棒状分子上を動くために十分広い空孔を準備すること

この2点に注意して著者らはシャトリング分子の設計・合成を行いました(図 3)。より広い空孔をもつMOFとしてZn4O(TPDC)3 (TPDC = Terphenyl dicarboxylic acid)を選定し、TPDC骨格にジアミンを導入した4から5に誘導しました。5のイミダゾール骨格はカチオン性であるため、これにクラウンエーテル([24]crown-8)を添加するとイミダゾール近傍にクラウンエーテルを固定することができます。その後、アルデヒドを同じTPDC骨格を変換することで、認識サイトを2つ有する化合物6を合成しました。さらに加水分解による3の合成、続くZn(BF4)2・6H2Oとの錯形成によって、分子シャトルを含む金属有機構造体UWDM-4 ((Zn4O)(4-4H)3))を合成しました。

2015-06-07_02-23-03

図3 UWDM-4の合成

 

MOF中での機能の観測

著者らは得られたUWDM-4に関して、温度可変1H-13C CP/MAS NMRを測定しました(図 4)。高温時にはシャトリング分子が運動することでコアレス(2つのピークの融合)が生じ、1種類のピークとなることが予想されます。低温になるとシャトリングが弱まりコアレスは生じず、2つのピークとなると考えられます。実際に、高温では、ベンゾイミダゾールの2位に対応する1つのピーク(154.0 ppm)が観測されましたが、室温まで下げると2つの異なるピーク(152.7, 155.2 ppm)が観測されました。この結果より著者らは、MOF中でシャトリングが行われていることを結論づけています。また、MOF中におけるシャトリングは、温度可変NMRの実験データに対してピークフィッティングを行うことで、1秒間におよそ280回運動していることが分かりました。このような固体状態中での分子シャトリングの観測は初めての例です。

 

応用可能?

今回はLoebらによって報告されたMOF中でのシャトリング分子の合成について紹介しました。将来的には、分子スイッチなどの機能性材料としての応用が期待できる!

といいたいところですが、それはまだまだ先の話。なかなか困難な道があると思います。ただ、分子が密に凝集した固体中にも関わらず、その固体中で分子が運動させるアイデアと設計・また実際に合成し、シャトリングを観測したことは現象論として大変面白く、こういう研究は材料としての使える、使えないという議論の前に、ピュアなサイエンスとして価値のあるものだと思います。

 

関連文献

  1. Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131. DOI: 10.1021/ja00013a096
  2. Bissell, R. A.; Cordova, E.; Kaifer, A. E.; Stoddart, J. F. Nature 1994, 369, 133. DOI:10.1038/369133a0
  3. Murakami, H.; Kawabuchi, A.; Kotoo, K.; Kunitake, M.; Nakashima, N. J. Am. Chem. Soc. 1997, 119, 7605. DOI: 10.1021/ja971438a
  4. Tseng, H.-R.; Vignon, S. A.; Stoddart, J. F. Angew. Chem. 2003, 115, 1529. DOI:10.1002/ange.200250453
  5. (a) Loeb, S. J. Chem. Soc. Rev. 2007, 
36, 226. DOI: 10.1039/B605172N (b) 
Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. 
Chem. Soc. Rev. 2012, 41, 19. DOI: 10.1039/C1CS15262A
  6. (a) Loeb, S. J.; Davidson, G. J. E. Angew. Chem. Int. Ed. 2003, 42, 74. DOI:10.1002/anie.200390057 (b)
 Hoffart D. J.; Loeb, S. J. Angew. Chem. Int. Ed. 2005, 42, 901. DOI: 10.1002/anie.200461707
  7. Vukotic, V. N.; Harris, K. J.; Zhu, K.; Schurko, R. W.; Loeb, S. J. Nature 
Chem. 2012, 4, 456. DOI: 10.1038/nchem.1354
  8. Zhu, K.; Vukotic, V. N.; O’Keefe, C. A.; Schurko, R. W.; Loeb, S. J. J. Am. Chem. Soc. 2014, 136, 7403. DOI: 10.1021/ja502238a

 

関連書籍

 

外部リンク

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. ホウ素ーホウ素三重結合を評価する
  2. アレーン類の直接的クロスカップリング
  3. ウーロン茶の中でも医薬品の化学合成が可能に
  4. 若手研究者vsノーベル賞受賞者 【基礎編】
  5. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の…
  6. “研究者”人生ゲーム
  7. 第2回慶應有機合成化学若手シンポジウム
  8. 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. タミフルの新規合成法
  2. コニア エン反応 Conia–Ene Reaction
  3. Late-Stage C(sp3)-H活性化法でステープルペプチドを作る
  4. タルセバ、すい臓がんではリスクが利点を上回る可能性 =FDA
  5. 【速報】2012年ノーベル化学賞発表!!「Gタンパク質共役受容体に関する研究」
  6. アコニチン (aconitine)
  7. 創薬化学―有機合成からのアプローチ
  8. 有機触媒 / Organocatalyst
  9. 化学は地球を救う!
  10. 芳香族化合物のニトロ化 Nitration of Aromatic Compounds

関連商品

注目情報

注目情報

最新記事

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

イグノーベル化学賞2018「汚れ洗浄剤としてヒトの唾液はどれほど有効か?」

Tshozoです。今年もIg Nobel賞、発表されましたね。色々と興味深い発表が続く中、NHKで放…

最近のwebから〜固体の水素水?・化合物名の商標登録〜

皆様夏休みはいかがお過ごしでしたでしょうか。大学はそろそろ後学期が始まってきたところです。小…

化学の力で複雑なタンパク質メチル化反応を制御する

第160回目のスポットライトリサーチは、連名での登場です。理化学研究所の五月女 宜裕 さん・島津 忠…

PAGE TOP