[スポンサーリンク]

一般的な話題

計算化学:DFT計算って何?Part II

[スポンサーリンク]

 

近年、DFT計算により実験結果をサポートする論文が増えて来ています。実験屋さんでも計算化学についての知識を持つことは必須となりつつあります。

しかし、DFTって何なのでしょうか?DFT計算が一般的になりつつある昨今、「DFT計算って何?」という基本的な質問をしにくい雰囲気があると思います。

周りの人に思い切って聞くことができず、夜中にこっそりWikipediaで調べてみても「密度汎関数法」と書いてあるだけで「???」な感じです。そう、計算化学を分かりやすく説明しているウェブサイト、教科書はあまりないのです。計算化学が一部の人にしか普及しないのは、難しいとかではなく、バイブル的な教科書が存在しないためだと個人的には思っています。

 

前回の「汎関数って何?」という記事のpart IIに当たる今回の記事では、量子化学計算のかんたんな歴史から説明し、次の記事(PartIII)と併せて、初心者の人でもDFT計算が何かを理解できるようにしようと思います。

今回の記事でも細かいところは省略していくので、詳細を知りたい勉強熱心な読者の方は一番下の参考図書を読んで下さいね!

 

量子力学の発展

量子化学歴史

前回の記事に書いたように、「物質の性質、反応性は、その物質の電子状態が分かれば予測できる」という考えに基づき、有機化学者は量子化学計算を行なっています。電子状態を知る=シュレーディンガー方程式を解くということになっています。

 

このシュレーディンガー方程式ですが、1926年に発表されています。さらにシュレーディンガー方程式に相対論を盛り込んだディラック方程式は1928年に発表されています。

この時期は量子力学が一気に進展したときで、ハートリー法(1928年Hartree)、スレーター行列式(1929年Slater)、ハートリーフォック法(1930年Fock, Slater)、分子軌道法(1926年Hund、1927年Mulliken)、メラープリセット摂動法(1934年Moller, Plesset)、TDHF法(1930年Dirac)LDA交換汎関数(1930年Dirac)など、まだまだ書ききれないくらい多くの理論が生み出されました。この時期のキーワードは、「実際の分子中のシュレーディンガー方程式をどのように解いたら良いのだろうか?」でした。

 

余談ですが、量子力学の歴史を勉強していると、さまざまな理論の提唱、開発で大きな貢献をしているDirac、、、天才過ぎだろって思ってしまいます。Diracは、ノーベル賞の受賞を「有名になるのが嫌だ」という理由で辞退しようとして、周りの人達に全力で止められたという少し変わった人なのですが、、、すごい人ですね。

 

さて、量子力学の歴史の説明に戻ります。この後、「分子の中の電子運動の波動関数をどのように解釈すればよいか?」ということをキーワードにし、混成軌道モデル(1928年Pauling)、遷移状態理論(1935年Eyring)、LCMO近似(1929年Lennard-Jones、1938年Coulson)、化学反応原理(1936年Bell、1938年Evans, Polanyi)などが発表されました。

 

ここまで、いろいろな理論を羅列してきましたが、要約すると

「シュレーディンガー方程式を厳密に解くのは不可能→近似的に解く理論の開発が1930年前後に盛んに行なわれた」

です。

 

DFT (密度汎関数法)の歴史

さて、ここまで紹介した理論は「シュレーディンガー方程式を解くことは難しいので近似的に解いてしまおう!」という感じでした。それに対し、DFTは「裏技的にハミルトニアンを求めてしまおう!」みたいなイメージです。

DFT

DFTの基礎理論となるトーマス・フェルミ理論は1927年に発表されました。簡単に言うと電子密度だけでハミルトニアン演算子を表わすことが出来ますよ!という理論です。

 

しかし、この理論には解の一意性や汎関数の存在を保証する物理的な裏付けは何も無く、また化学結合すら全く再現できないため、1960年まで忘れ去られていました。現在では皆が使っているDFTも、当時は「使えないな、コレ」みたいな感じだったんですね。

 

1964年、トーマス・フェルミ理論のコンセプトの正しさを物理的に裏付ける定理が提案されました。ホーエンベルグ・コーン定理です。これは下記の2つの定理からなっています。

1.外場ポテンシャルは電子密度で決定される。

2.あらゆる電子密度について、常にエネルギーの変分原理が成り立つ。

 

しかし、第一定理の証明で電子密度が波動関数と一対一対応すると仮定していることが若干問題であり、これはV表現可能性問題と呼ばれています。1979年レヴィは制限つき探索法を提案してこの問題を解決しました。また、第二定理の証明においてもN表現可能性問題という問題がありました。

 

コーン・シャム方程式

前回の記事ではDFT計算=コーン・シャム方程式のような書き方をしたため、「トーマス・フェルミ理論?」「ホーエンベルグ・コーン定理?」と頭の中が混乱しているかもしれませんが、ここからいよいよコーン・シャム方程式が登場します。

Kohn-Sham2

ホーエンベルグ・コーン定理によりトーマス・フェルミ理論の正しさが立証されましたが、実際の電子状態の計算はまだ出来ませんでした。この定理に基づく計算法は、翌年1965年に発表されたコーン・シャム方程式を用いることによりやっと可能になりました。

コーン・シャム方程式では、運動エネルギーの計算に電子密度の汎関数ではなく、ハートリーフォック法と同様の独立近似の定式を利用しています。このことにより化学・固体物性の定量的な計算が可能となり、DFTの急速な拡大につながりました。

しかし、このことにより、トーマス・フェルミ理論で当初提唱された純粋なDFTと現在使われているDFT計算はイコールではなくなりました。つまり、多くの人が知らないでいるのですが、「DFT理論=コーン・シャム方程式」は厳密には違います。

ここまでを簡単にまとめると、

「1927年にDFT理論が提唱される→実用性なし→1964年にホーエンベルグ・コーン定理により証明される→1965年にコーン・シャム方程式が発表され実際の系に使えるようになった」

です。

ざっと1930年から1980年まで説明しましたが、長くなりましたので、続きは次回の記事で書きたいと思います。

 

参考図書

[amazonjs asin=”4061532804″ locale=”JP” title=”密度汎関数法の基礎 (KS物理専門書)”]

 

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 窒素を直接 “消去” する分子骨格変換
  2. 第10回 野依フォーラム若手育成塾
  3. 化学連合シンポ&化学コミュニケーション賞授賞式に行ってきました
  4. AI翻訳エンジンを化学系文章で比較してみた
  5. 目指せ化学者墓マイラー
  6. 混合試料から各化合物のスペクトルを得る(DOSY法)
  7. 条件最適化向けマテリアルズ・インフォマティクスSaaS 「miH…
  8. 結晶構造データは論文か?CSD Communicationsの公…

注目情報

ピックアップ記事

  1. 芳香族ニトロ化合物のクロスカップリング反応
  2. 食品安全、環境などの分析で中国機関と共同研究 堀場製
  3. シンクロトロン放射光を用いたカップリング反応機構の解明
  4. Nature Chemistryデビュー間近!
  5. C–NおよびC–O求電子剤間の還元的クロスカップリング
  6. ケミカルバイオロジーとバイオケミストリー
  7. チャート式実験器具選択ガイド:実験メガネ・白衣編
  8. Igor Larrosa イゴール・ラロッサ
  9. タンパクの骨格を改変する、新たなスプライシング機構の発見
  10. 食品アクリルアミド低減を 国連専門委「有害の恐れ」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP