[スポンサーリンク]

一般的な話題

計算化学:DFT計算って何?Part II

 

近年、DFT計算により実験結果をサポートする論文が増えて来ています。実験屋さんでも計算化学についての知識を持つことは必須となりつつあります。

しかし、DFTって何なのでしょうか?DFT計算が一般的になりつつある昨今、「DFT計算って何?」という基本的な質問をしにくい雰囲気があると思います。

周りの人に思い切って聞くことができず、夜中にこっそりWikipediaで調べてみても「密度汎関数法」と書いてあるだけで「???」な感じです。そう、計算化学を分かりやすく説明しているウェブサイト、教科書はあまりないのです。計算化学が一部の人にしか普及しないのは、難しいとかではなく、バイブル的な教科書が存在しないためだと個人的には思っています。

 

前回の「汎関数って何?」という記事のpart IIに当たる今回の記事では、量子化学計算のかんたんな歴史から説明し、次の記事(PartIII)と併せて、初心者の人でもDFT計算が何かを理解できるようにしようと思います。

今回の記事でも細かいところは省略していくので、詳細を知りたい勉強熱心な読者の方は一番下の参考図書を読んで下さいね!

 

量子力学の発展

量子化学歴史

前回の記事に書いたように、「物質の性質、反応性は、その物質の電子状態が分かれば予測できる」という考えに基づき、有機化学者は量子化学計算を行なっています。電子状態を知る=シュレーディンガー方程式を解くということになっています。

 

このシュレーディンガー方程式ですが、1926年に発表されています。さらにシュレーディンガー方程式に相対論を盛り込んだディラック方程式は1928年に発表されています。

この時期は量子力学が一気に進展したときで、ハートリー法(1928年Hartree)、スレーター行列式(1929年Slater)、ハートリーフォック法(1930年Fock, Slater)、分子軌道法(1926年Hund、1927年Mulliken)、メラープリセット摂動法(1934年Moller, Plesset)、TDHF法(1930年Dirac)LDA交換汎関数(1930年Dirac)など、まだまだ書ききれないくらい多くの理論が生み出されました。この時期のキーワードは、「実際の分子中のシュレーディンガー方程式をどのように解いたら良いのだろうか?」でした。

 

余談ですが、量子力学の歴史を勉強していると、さまざまな理論の提唱、開発で大きな貢献をしているDirac、、、天才過ぎだろって思ってしまいます。Diracは、ノーベル賞の受賞を「有名になるのが嫌だ」という理由で辞退しようとして、周りの人達に全力で止められたという少し変わった人なのですが、、、すごい人ですね。

 

さて、量子力学の歴史の説明に戻ります。この後、「分子の中の電子運動の波動関数をどのように解釈すればよいか?」ということをキーワードにし、混成軌道モデル(1928年Pauling)、遷移状態理論(1935年Eyring)、LCMO近似(1929年Lennard-Jones、1938年Coulson)、化学反応原理(1936年Bell、1938年Evans, Polanyi)などが発表されました。

 

ここまで、いろいろな理論を羅列してきましたが、要約すると

「シュレーディンガー方程式を厳密に解くのは不可能→近似的に解く理論の開発が1930年前後に盛んに行なわれた」

です。

 

DFT (密度汎関数法)の歴史

さて、ここまで紹介した理論は「シュレーディンガー方程式を解くことは難しいので近似的に解いてしまおう!」という感じでした。それに対し、DFTは「裏技的にハミルトニアンを求めてしまおう!」みたいなイメージです。

DFT

DFTの基礎理論となるトーマス・フェルミ理論は1927年に発表されました。簡単に言うと電子密度だけでハミルトニアン演算子を表わすことが出来ますよ!という理論です。

 

しかし、この理論には解の一意性や汎関数の存在を保証する物理的な裏付けは何も無く、また化学結合すら全く再現できないため、1960年まで忘れ去られていました。現在では皆が使っているDFTも、当時は「使えないな、コレ」みたいな感じだったんですね。

 

1964年、トーマス・フェルミ理論のコンセプトの正しさを物理的に裏付ける定理が提案されました。ホーエンベルグ・コーン定理です。これは下記の2つの定理からなっています。

1.外場ポテンシャルは電子密度で決定される。

2.あらゆる電子密度について、常にエネルギーの変分原理が成り立つ。

 

しかし、第一定理の証明で電子密度が波動関数と一対一対応すると仮定していることが若干問題であり、これはV表現可能性問題と呼ばれています。1979年レヴィは制限つき探索法を提案してこの問題を解決しました。また、第二定理の証明においてもN表現可能性問題という問題がありました。

 

コーン・シャム方程式

前回の記事ではDFT計算=コーン・シャム方程式のような書き方をしたため、「トーマス・フェルミ理論?」「ホーエンベルグ・コーン定理?」と頭の中が混乱しているかもしれませんが、ここからいよいよコーン・シャム方程式が登場します。

Kohn-Sham2

ホーエンベルグ・コーン定理によりトーマス・フェルミ理論の正しさが立証されましたが、実際の電子状態の計算はまだ出来ませんでした。この定理に基づく計算法は、翌年1965年に発表されたコーン・シャム方程式を用いることによりやっと可能になりました。

コーン・シャム方程式では、運動エネルギーの計算に電子密度の汎関数ではなく、ハートリーフォック法と同様の独立近似の定式を利用しています。このことにより化学・固体物性の定量的な計算が可能となり、DFTの急速な拡大につながりました。

しかし、このことにより、トーマス・フェルミ理論で当初提唱された純粋なDFTと現在使われているDFT計算はイコールではなくなりました。つまり、多くの人が知らないでいるのですが、「DFT理論=コーン・シャム方程式」は厳密には違います。

ここまでを簡単にまとめると、

「1927年にDFT理論が提唱される→実用性なし→1964年にホーエンベルグ・コーン定理により証明される→1965年にコーン・シャム方程式が発表され実際の系に使えるようになった」

です。

ざっと1930年から1980年まで説明しましたが、長くなりましたので、続きは次回の記事で書きたいと思います。

 

参考図書

 

The following two tabs change content below.
ゼロ

ゼロ

女の子。研究所勤務。趣味は読書とハイキング ♪ ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 2016年JACS Most Read Articles Top…
  2. ルテニウム触媒を用いたcis選択的開環メタセシス重合
  3. 実験教育に最適!:鈴木ー宮浦クロスカップリング反応体験キット
  4. 投票!2014年ノーベル化学賞は誰の手に??
  5. ゴードン会議に参加して:ボストン周辺滞在記 PartI
  6. 最強の文献管理ソフトはこれだ!
  7. ご注文は海外大学院ですか?〜準備編〜
  8. J-STAGE新デザイン評価版公開 ― フィードバックを送ろう

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マイクロ波を用いた合成プロセス技術と実用化への道【終了】
  2. 超微量紫外可視分光光度計に新型登場:NanoDrop One
  3. 高分子/金属・無機界面の相互作用と接着・密着性、耐久性の向上【終了】
  4. 複雑なアルカロイド合成
  5. Newton別冊「注目のスーパーマテリアル」が熱い!
  6. Angewandte Chemieの新RSSフィード
  7. ナノテクノロジー関連の特許が多すぎる問題
  8. 酸化亜鉛を用い青色ダイオード 東北大開発 コスト減期待
  9. ヤンセン 新たな抗HIV薬の製造販売承認を取得
  10. 緑色蛍光タンパク質を真似してRNAを光らせる

関連商品

注目情報

注目情報

最新記事

2017年の注目分子はどれ?

今年も残りあとわずかとなり、毎年おなじみのアメリカ化学会(ACS)によるMolecules of t…

アルデヒドのC-Hクロスカップリングによるケトン合成

プリンストン大学・David W. C. MacMillanらは、可視光レドックス触媒、ニッケル触媒…

“かぼちゃ分子”内で分子内Diels–Alder反応

環状水溶性ホスト分子であるククルビットウリルを用いて生体内酵素Diels–Alderaseの活性を模…

トーマス・レクタ Thomas Lectka

トーマス・レクタ (Thomas Lectka、19xx年xx月x日(デトロイト生)-)は、米国の有…

有機合成化学協会誌2017年12月号:四ヨウ化チタン・高機能金属ナノクラスター・ジシリルベンゼン・超分子タンパク質・マンノペプチマイシンアグリコン

2017年も残すところあとわずかですね。みなさまにとって2017年はどのような年でしたでしょうか。…

イミデートラジカルを経由するアルコールのβ位選択的C-Hアミノ化反応

オハイオ州立大学・David A. Nagibらは、脂肪族アルコールのラジカル関与型β位選択的C(s…

Chem-Station Twitter

PAGE TOP