[スポンサーリンク]

一般的な話題

計算化学:DFT計算って何?Part II

[スポンサーリンク]

 

近年、DFT計算により実験結果をサポートする論文が増えて来ています。実験屋さんでも計算化学についての知識を持つことは必須となりつつあります。

しかし、DFTって何なのでしょうか?DFT計算が一般的になりつつある昨今、「DFT計算って何?」という基本的な質問をしにくい雰囲気があると思います。

周りの人に思い切って聞くことができず、夜中にこっそりWikipediaで調べてみても「密度汎関数法」と書いてあるだけで「???」な感じです。そう、計算化学を分かりやすく説明しているウェブサイト、教科書はあまりないのです。計算化学が一部の人にしか普及しないのは、難しいとかではなく、バイブル的な教科書が存在しないためだと個人的には思っています。

 

前回の「汎関数って何?」という記事のpart IIに当たる今回の記事では、量子化学計算のかんたんな歴史から説明し、次の記事(PartIII)と併せて、初心者の人でもDFT計算が何かを理解できるようにしようと思います。

今回の記事でも細かいところは省略していくので、詳細を知りたい勉強熱心な読者の方は一番下の参考図書を読んで下さいね!

 

量子力学の発展

量子化学歴史

前回の記事に書いたように、「物質の性質、反応性は、その物質の電子状態が分かれば予測できる」という考えに基づき、有機化学者は量子化学計算を行なっています。電子状態を知る=シュレーディンガー方程式を解くということになっています。

 

このシュレーディンガー方程式ですが、1926年に発表されています。さらにシュレーディンガー方程式に相対論を盛り込んだディラック方程式は1928年に発表されています。

この時期は量子力学が一気に進展したときで、ハートリー法(1928年Hartree)、スレーター行列式(1929年Slater)、ハートリーフォック法(1930年Fock, Slater)、分子軌道法(1926年Hund、1927年Mulliken)、メラープリセット摂動法(1934年Moller, Plesset)、TDHF法(1930年Dirac)LDA交換汎関数(1930年Dirac)など、まだまだ書ききれないくらい多くの理論が生み出されました。この時期のキーワードは、「実際の分子中のシュレーディンガー方程式をどのように解いたら良いのだろうか?」でした。

 

余談ですが、量子力学の歴史を勉強していると、さまざまな理論の提唱、開発で大きな貢献をしているDirac、、、天才過ぎだろって思ってしまいます。Diracは、ノーベル賞の受賞を「有名になるのが嫌だ」という理由で辞退しようとして、周りの人達に全力で止められたという少し変わった人なのですが、、、すごい人ですね。

 

さて、量子力学の歴史の説明に戻ります。この後、「分子の中の電子運動の波動関数をどのように解釈すればよいか?」ということをキーワードにし、混成軌道モデル(1928年Pauling)、遷移状態理論(1935年Eyring)、LCMO近似(1929年Lennard-Jones、1938年Coulson)、化学反応原理(1936年Bell、1938年Evans, Polanyi)などが発表されました。

 

ここまで、いろいろな理論を羅列してきましたが、要約すると

「シュレーディンガー方程式を厳密に解くのは不可能→近似的に解く理論の開発が1930年前後に盛んに行なわれた」

です。

 

DFT (密度汎関数法)の歴史

さて、ここまで紹介した理論は「シュレーディンガー方程式を解くことは難しいので近似的に解いてしまおう!」という感じでした。それに対し、DFTは「裏技的にハミルトニアンを求めてしまおう!」みたいなイメージです。

DFT

DFTの基礎理論となるトーマス・フェルミ理論は1927年に発表されました。簡単に言うと電子密度だけでハミルトニアン演算子を表わすことが出来ますよ!という理論です。

 

しかし、この理論には解の一意性や汎関数の存在を保証する物理的な裏付けは何も無く、また化学結合すら全く再現できないため、1960年まで忘れ去られていました。現在では皆が使っているDFTも、当時は「使えないな、コレ」みたいな感じだったんですね。

 

1964年、トーマス・フェルミ理論のコンセプトの正しさを物理的に裏付ける定理が提案されました。ホーエンベルグ・コーン定理です。これは下記の2つの定理からなっています。

1.外場ポテンシャルは電子密度で決定される。

2.あらゆる電子密度について、常にエネルギーの変分原理が成り立つ。

 

しかし、第一定理の証明で電子密度が波動関数と一対一対応すると仮定していることが若干問題であり、これはV表現可能性問題と呼ばれています。1979年レヴィは制限つき探索法を提案してこの問題を解決しました。また、第二定理の証明においてもN表現可能性問題という問題がありました。

 

コーン・シャム方程式

前回の記事ではDFT計算=コーン・シャム方程式のような書き方をしたため、「トーマス・フェルミ理論?」「ホーエンベルグ・コーン定理?」と頭の中が混乱しているかもしれませんが、ここからいよいよコーン・シャム方程式が登場します。

Kohn-Sham2

ホーエンベルグ・コーン定理によりトーマス・フェルミ理論の正しさが立証されましたが、実際の電子状態の計算はまだ出来ませんでした。この定理に基づく計算法は、翌年1965年に発表されたコーン・シャム方程式を用いることによりやっと可能になりました。

コーン・シャム方程式では、運動エネルギーの計算に電子密度の汎関数ではなく、ハートリーフォック法と同様の独立近似の定式を利用しています。このことにより化学・固体物性の定量的な計算が可能となり、DFTの急速な拡大につながりました。

しかし、このことにより、トーマス・フェルミ理論で当初提唱された純粋なDFTと現在使われているDFT計算はイコールではなくなりました。つまり、多くの人が知らないでいるのですが、「DFT理論=コーン・シャム方程式」は厳密には違います。

ここまでを簡単にまとめると、

「1927年にDFT理論が提唱される→実用性なし→1964年にホーエンベルグ・コーン定理により証明される→1965年にコーン・シャム方程式が発表され実際の系に使えるようになった」

です。

ざっと1930年から1980年まで説明しましたが、長くなりましたので、続きは次回の記事で書きたいと思います。

 

参考図書

 

ゼロ

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. プラスチックに数層の分子配向膜を形成する手法の開発
  2. 【書籍】「世界一美しい数学塗り絵」~宇宙の紋様~
  3. 科学雑誌 Newton 2019年6月号は化学特集!
  4. とある社長の提言について ~日本合成ゴムとJSR~
  5. E. J. Corey からの手紙
  6. ホウ素と窒素で何を運ぶ?
  7. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  8. 軸不斉のRとS

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「第22回 理工系学生科学技術論文コンクール」の応募を開始
  2. 多角的英語勉強法~オンライン英会話だけで満足していませんか~
  3. 赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-
  4. コンピューターが有機EL材料の逆項間交差の速度定数を予言!
  5. ジョージ・オラー George Andrew Olah
  6. ODOOSをリニューアル!
  7. 砂糖水からモルヒネ?
  8. iPhone/iPodTouchで使える化学アプリケーション 【Part 2】
  9. 平成をケムステニュースで振り返る
  10. フラーレン:発見から30年

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
« 6月   8月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜

第342回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科・宮澤友樹 さんにお願いし…

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP