[スポンサーリンク]

一般的な話題

計算化学:DFT計算って何?Part II

[スポンサーリンク]

 

近年、DFT計算により実験結果をサポートする論文が増えて来ています。実験屋さんでも計算化学についての知識を持つことは必須となりつつあります。

しかし、DFTって何なのでしょうか?DFT計算が一般的になりつつある昨今、「DFT計算って何?」という基本的な質問をしにくい雰囲気があると思います。

周りの人に思い切って聞くことができず、夜中にこっそりWikipediaで調べてみても「密度汎関数法」と書いてあるだけで「???」な感じです。そう、計算化学を分かりやすく説明しているウェブサイト、教科書はあまりないのです。計算化学が一部の人にしか普及しないのは、難しいとかではなく、バイブル的な教科書が存在しないためだと個人的には思っています。

 

前回の「汎関数って何?」という記事のpart IIに当たる今回の記事では、量子化学計算のかんたんな歴史から説明し、次の記事(PartIII)と併せて、初心者の人でもDFT計算が何かを理解できるようにしようと思います。

今回の記事でも細かいところは省略していくので、詳細を知りたい勉強熱心な読者の方は一番下の参考図書を読んで下さいね!

 

量子力学の発展

量子化学歴史

前回の記事に書いたように、「物質の性質、反応性は、その物質の電子状態が分かれば予測できる」という考えに基づき、有機化学者は量子化学計算を行なっています。電子状態を知る=シュレーディンガー方程式を解くということになっています。

 

このシュレーディンガー方程式ですが、1926年に発表されています。さらにシュレーディンガー方程式に相対論を盛り込んだディラック方程式は1928年に発表されています。

この時期は量子力学が一気に進展したときで、ハートリー法(1928年Hartree)、スレーター行列式(1929年Slater)、ハートリーフォック法(1930年Fock, Slater)、分子軌道法(1926年Hund、1927年Mulliken)、メラープリセット摂動法(1934年Moller, Plesset)、TDHF法(1930年Dirac)LDA交換汎関数(1930年Dirac)など、まだまだ書ききれないくらい多くの理論が生み出されました。この時期のキーワードは、「実際の分子中のシュレーディンガー方程式をどのように解いたら良いのだろうか?」でした。

 

余談ですが、量子力学の歴史を勉強していると、さまざまな理論の提唱、開発で大きな貢献をしているDirac、、、天才過ぎだろって思ってしまいます。Diracは、ノーベル賞の受賞を「有名になるのが嫌だ」という理由で辞退しようとして、周りの人達に全力で止められたという少し変わった人なのですが、、、すごい人ですね。

 

さて、量子力学の歴史の説明に戻ります。この後、「分子の中の電子運動の波動関数をどのように解釈すればよいか?」ということをキーワードにし、混成軌道モデル(1928年Pauling)、遷移状態理論(1935年Eyring)、LCMO近似(1929年Lennard-Jones、1938年Coulson)、化学反応原理(1936年Bell、1938年Evans, Polanyi)などが発表されました。

 

ここまで、いろいろな理論を羅列してきましたが、要約すると

「シュレーディンガー方程式を厳密に解くのは不可能→近似的に解く理論の開発が1930年前後に盛んに行なわれた」

です。

 

DFT (密度汎関数法)の歴史

さて、ここまで紹介した理論は「シュレーディンガー方程式を解くことは難しいので近似的に解いてしまおう!」という感じでした。それに対し、DFTは「裏技的にハミルトニアンを求めてしまおう!」みたいなイメージです。

DFT

DFTの基礎理論となるトーマス・フェルミ理論は1927年に発表されました。簡単に言うと電子密度だけでハミルトニアン演算子を表わすことが出来ますよ!という理論です。

 

しかし、この理論には解の一意性や汎関数の存在を保証する物理的な裏付けは何も無く、また化学結合すら全く再現できないため、1960年まで忘れ去られていました。現在では皆が使っているDFTも、当時は「使えないな、コレ」みたいな感じだったんですね。

 

1964年、トーマス・フェルミ理論のコンセプトの正しさを物理的に裏付ける定理が提案されました。ホーエンベルグ・コーン定理です。これは下記の2つの定理からなっています。

1.外場ポテンシャルは電子密度で決定される。

2.あらゆる電子密度について、常にエネルギーの変分原理が成り立つ。

 

しかし、第一定理の証明で電子密度が波動関数と一対一対応すると仮定していることが若干問題であり、これはV表現可能性問題と呼ばれています。1979年レヴィは制限つき探索法を提案してこの問題を解決しました。また、第二定理の証明においてもN表現可能性問題という問題がありました。

 

コーン・シャム方程式

前回の記事ではDFT計算=コーン・シャム方程式のような書き方をしたため、「トーマス・フェルミ理論?」「ホーエンベルグ・コーン定理?」と頭の中が混乱しているかもしれませんが、ここからいよいよコーン・シャム方程式が登場します。

Kohn-Sham2

ホーエンベルグ・コーン定理によりトーマス・フェルミ理論の正しさが立証されましたが、実際の電子状態の計算はまだ出来ませんでした。この定理に基づく計算法は、翌年1965年に発表されたコーン・シャム方程式を用いることによりやっと可能になりました。

コーン・シャム方程式では、運動エネルギーの計算に電子密度の汎関数ではなく、ハートリーフォック法と同様の独立近似の定式を利用しています。このことにより化学・固体物性の定量的な計算が可能となり、DFTの急速な拡大につながりました。

しかし、このことにより、トーマス・フェルミ理論で当初提唱された純粋なDFTと現在使われているDFT計算はイコールではなくなりました。つまり、多くの人が知らないでいるのですが、「DFT理論=コーン・シャム方程式」は厳密には違います。

ここまでを簡単にまとめると、

「1927年にDFT理論が提唱される→実用性なし→1964年にホーエンベルグ・コーン定理により証明される→1965年にコーン・シャム方程式が発表され実際の系に使えるようになった」

です。

ざっと1930年から1980年まで説明しましたが、長くなりましたので、続きは次回の記事で書きたいと思います。

 

参考図書

 

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. インドールの触媒的不斉ヒドロホウ素化反応の開発
  2. 「えれめんトランプ2.0」が発売された
  3. 有機合成化学協会誌2017年7月号:有機ヘテロ化合物・タンパク質…
  4. 新たな環状スズ化合物の合成とダブルカップリングへの応用
  5. 徹底的に電子不足化した有機π共役分子 ~高機能n型有機半導体材料…
  6. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  7. 【経験者に聞く】マテリアルズ・インフォマティクスの事業開発キャリ…
  8. 化学者の単語登録テクニック

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第16回 結晶から結晶への化学変換 – Miguel Garcia-Garibay
  2. 【読者特典】第92回日本化学会付設展示会を楽しもう!PartIII+薬学会も!
  3. 直接クプラート化によるフルオロアルキル銅錯体の形成と応用
  4. ベンゼン一つで緑色発光分子をつくる
  5. バイオディーゼル燃料による大気汚染「改善」への影響は…?
  6. 文献管理ソフトを徹底比較!
  7. ウーリンス試薬 Woollins’ Reagent
  8. 芳香族化合物のC–Hシリル化反応:第三の手法
  9. 米メルク、業績低迷長期化へ
  10. ビタミンと金属錯体から合成した人工の酵素

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP