[スポンサーリンク]

化学者のつぶやき

可視光によるC–Sクロスカップリング

[スポンサーリンク]

可視光により促進されるアリールチオールとアリールハライドのC–S結合形成クロスカップリングが開発された。穏和な反応条件で官能基許容性が高く、様々な基質に適用可能である。

芳香族チオエーテル骨格形成反応

芳香族チオエーテル骨格は医薬品や有機材料まで幅広く応用例があり、有用な構造体である。そのため、低環境負荷で原子効率に優れる効率的なC–S結合形成法の開発は、合成化学から物質科学まで広い分野へと多大なるインパクトを与える。

これまでC–S結合形成には主に遷移金属触媒によるチオールとハロゲン化アリールとのクロスカップリングが用いられてきた(図1A)。しかし、空気に脆弱な配位子の使用や、強塩基および高温を必要とすることが多く(1)、より穏和なC–Sカップリングの開発が望まれる。

近年、穏和な反応条件下でのC–Sクロスカップリングを実現する手法として可視光レドックス触媒を用いた反応が注目されている。これまでにRuやIr錯体などの可視光レドックス触媒を用いたC–S結合形成反応(図1A)(2)が開発されているが、反応系のスケールアップやレアメタルの使用に難点がある。またUVを用いたC–S結合形成反応(図1B)(3)も報告されているが、高エネルギーなUVの使用はしばしば副反応を誘起してしまう。

今回、コロラド州立大学のMiyake助教授らは、塩基存在下で可視光により進行するチオールとハロゲン化アリールのC–Sカップリング反応を見出したので紹介する(図1C)。遷移金属触媒及び可視光レドックス触媒なしに室温で反応が進行するのは特筆すべき点である。

図1. アリールハライドとチオール間のC–Sクロスカップリング

 

Visible-Light-Promoted C–S Cross-Coupling via Intermolecular Charge Transfer

Liu, B.; Lim. C.-H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616.

DOI: 10.1021/jacs.7b07390

論文著者の紹介

研究者:Garret M. Miyake

研究者の経歴:
B.S., Pacific University
2006-2011 Ph.D., Colorado State University (Prof.  Eugene Y.-X. Chen)
2011-2014 Posdoc., California Institute of Technology (Prof.  Robert H. Grubbs)
2014-2017 Assistant Prof., University of Colorado Boulder
2017- Assistant Prof., Colorado State University

研究内容 : 高分子化学、光化学、材料化学

論文の概要

今回の成果はMiyake助教授らが注力している有機可視光レドックス触媒を用いる反応の研究において、アリールチオールとアリールハライドとのC–S結合形成反応の開発中に偶然発見されたものである。

本反応はDMSO溶媒中、アリールハライド1とアリールチオール2に対しCs2CO3を1.5当量加え、可視光を照射することでチオエーテル3が得られる(図2A)。

本反応は広範な基質一般性をもち、電子供与基、電子求引基あるいは立体障害が大きい置換基をもつ2に対しても適用できる。官能基許容性は高く、2にヒドロキシ基、アミンやヘテロ芳香環をもつ場合でも反応が進行する。実際に、高反応性官能基をもつ医薬品の誘導化へと応用展開がなされている。

さらに、これまで可視光レドックス触媒によるC–Sクロスカップリングではあまり適用されていなかった塩化アリールも反応する。

紫外可視吸収スペクトル分析とDFT計算を用いた反応機構解析により、本反応は電子不足性アリールハライド1aとチオラートアニオン2aからなるEDA[Electron Donor–Acceptor]錯体の形成を経て進行することが示唆された(図2B)。すなわち、1) 2aが塩基により脱プロトン化されることで1aとEDA錯体を形成、2) チオラートからアリールハライドへの可視光吸収による分子間電荷移動、3) ハロゲンイオン、チイルラジカル及びアリールラジカルの生成、4) チイルラジカルとアリールラジカルのラジカルカップリングによる目的物の生成、という機構で進行する。

図2. 基質適用範囲(A)と推定反応機構(B)

 

以上のように、今回の論文では可視光を用いた穏和な条件下でのC–Sカップリング反応が達成された。汎用性が高い本反応は、今後チオエーテル骨格形成において大きな威力を発揮するであろう。

参考文献

  1. Kosugi, M.; Shimizu, T.; Migita, T. Lett. 1978, 13. DOI: 10.1246/cl.1978.13
  2. (a) Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. Am. Chem. Soc. 2016, 138, 1760. DOI: 10.1021/jacs.5b11244 (b) Wang, X.; Cuny, G. D.; Noël, T. Angew. Chem., Int. Ed. 2013, 52, 7860. DOI: 10.1002/anie.201303483
  3. (a) Bunnett, J. F.; Creary, X. Org. Chem. 1974, 39, 3173. DOI: 10.1021/jo00935a037 (b) Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548. DOI: 10.1021/ja404050f
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 英文読解の負担を減らすマウスオーバー辞書
  2. 赤外光で分子の結合を切る!
  3. Bayer Material Scienceの分離独立が語るもの…
  4. PACIFICHEM2010に参加してきました!②
  5. 論文引用ランキングから見る、化学界の世界的潮流
  6. イスラエルの化学ってどうよ?
  7. 個性あるTOCその③
  8. 酸素を使った触媒的Dess–Martin型酸化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 求核的フルオロアルキル化 Nucleophilic Fluoroalkylation
  2. 高活性な不斉求核有機触媒の創製
  3. 近傍PCET戦略でアルコキシラジカルを生成する
  4. 3Dプリンタとシェールガスとポリ乳酸と
  5. 呉羽化学に課徴金2億6000万円・価格カルテルで公取委
  6. 化学者の単語登録テクニック
  7. 帝人、EV向けメンブレンのラインを拡充
  8. 書いたのは機械。テキストの自動生成による初の学術文献が出版
  9. スティーブン・ジマーマン Steven C. Zimmerman
  10. 藤沢の野鳥変死、胃から農薬成分検出

関連商品

注目情報

注目情報

最新記事

続・企業の研究を通して感じたこと

自分は、2014年に「企業の研究を通して感じたこと」という記事を執筆しましたが、それから5年が経ち、…

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

Chem-Station Twitter

PAGE TOP