[スポンサーリンク]

化学者のつぶやき

可視光によるC–Sクロスカップリング

可視光により促進されるアリールチオールとアリールハライドのC–S結合形成クロスカップリングが開発された。穏和な反応条件で官能基許容性が高く、様々な基質に適用可能である。

芳香族チオエーテル骨格形成反応

芳香族チオエーテル骨格は医薬品や有機材料まで幅広く応用例があり、有用な構造体である。そのため、低環境負荷で原子効率に優れる効率的なC–S結合形成法の開発は、合成化学から物質科学まで広い分野へと多大なるインパクトを与える。

これまでC–S結合形成には主に遷移金属触媒によるチオールとハロゲン化アリールとのクロスカップリングが用いられてきた(図1A)。しかし、空気に脆弱な配位子の使用や、強塩基および高温を必要とすることが多く(1)、より穏和なC–Sカップリングの開発が望まれる。

近年、穏和な反応条件下でのC–Sクロスカップリングを実現する手法として可視光レドックス触媒を用いた反応が注目されている。これまでにRuやIr錯体などの可視光レドックス触媒を用いたC–S結合形成反応(図1A)(2)が開発されているが、反応系のスケールアップやレアメタルの使用に難点がある。またUVを用いたC–S結合形成反応(図1B)(3)も報告されているが、高エネルギーなUVの使用はしばしば副反応を誘起してしまう。

今回、コロラド州立大学のMiyake助教授らは、塩基存在下で可視光により進行するチオールとハロゲン化アリールのC–Sカップリング反応を見出したので紹介する(図1C)。遷移金属触媒及び可視光レドックス触媒なしに室温で反応が進行するのは特筆すべき点である。

図1. アリールハライドとチオール間のC–Sクロスカップリング

 

Visible-Light-Promoted C–S Cross-Coupling via Intermolecular Charge Transfer

Liu, B.; Lim. C.-H.; Miyake, G. M. J. Am. Chem. Soc. 2017, 139, 13616.

DOI: 10.1021/jacs.7b07390

論文著者の紹介

研究者:Garret M. Miyake

研究者の経歴:
B.S., Pacific University
2006-2011 Ph.D., Colorado State University (Prof.  Eugene Y.-X. Chen)
2011-2014 Posdoc., California Institute of Technology (Prof.  Robert H. Grubbs)
2014-2017 Assistant Prof., University of Colorado Boulder
2017- Assistant Prof., Colorado State University

研究内容 : 高分子化学、光化学、材料化学

論文の概要

今回の成果はMiyake助教授らが注力している有機可視光レドックス触媒を用いる反応の研究において、アリールチオールとアリールハライドとのC–S結合形成反応の開発中に偶然発見されたものである。

本反応はDMSO溶媒中、アリールハライド1とアリールチオール2に対しCs2CO3を1.5当量加え、可視光を照射することでチオエーテル3が得られる(図2A)。

本反応は広範な基質一般性をもち、電子供与基、電子求引基あるいは立体障害が大きい置換基をもつ2に対しても適用できる。官能基許容性は高く、2にヒドロキシ基、アミンやヘテロ芳香環をもつ場合でも反応が進行する。実際に、高反応性官能基をもつ医薬品の誘導化へと応用展開がなされている。

さらに、これまで可視光レドックス触媒によるC–Sクロスカップリングではあまり適用されていなかった塩化アリールも反応する。

紫外可視吸収スペクトル分析とDFT計算を用いた反応機構解析により、本反応は電子不足性アリールハライド1aとチオラートアニオン2aからなるEDA[Electron Donor–Acceptor]錯体の形成を経て進行することが示唆された(図2B)。すなわち、1) 2aが塩基により脱プロトン化されることで1aとEDA錯体を形成、2) チオラートからアリールハライドへの可視光吸収による分子間電荷移動、3) ハロゲンイオン、チイルラジカル及びアリールラジカルの生成、4) チイルラジカルとアリールラジカルのラジカルカップリングによる目的物の生成、という機構で進行する。

図2. 基質適用範囲(A)と推定反応機構(B)

 

以上のように、今回の論文では可視光を用いた穏和な条件下でのC–Sカップリング反応が達成された。汎用性が高い本反応は、今後チオエーテル骨格形成において大きな威力を発揮するであろう。

参考文献

  1. Kosugi, M.; Shimizu, T.; Migita, T. Lett. 1978, 13. DOI: 10.1246/cl.1978.13
  2. (a) Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.; Johannes, J. W. Am. Chem. Soc. 2016, 138, 1760. DOI: 10.1021/jacs.5b11244 (b) Wang, X.; Cuny, G. D.; Noël, T. Angew. Chem., Int. Ed. 2013, 52, 7860. DOI: 10.1002/anie.201303483
  3. (a) Bunnett, J. F.; Creary, X. Org. Chem. 1974, 39, 3173. DOI: 10.1021/jo00935a037 (b) Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 9548. DOI: 10.1021/ja404050f
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 構造式を美しく書くために【準備編】
  2. “Wakati Project” 低コス…
  3. ケムステイブニングミキサー2016を終えて
  4. 大環状ヘテロ環の合成から抗がん剤開発へ
  5. 薬物耐性菌を学ぶーChemical Times特集より
  6. ちょっと変わったイオン液体
  7. 元素ネイルワークショップー元素ネイルってなに?
  8. イスラエルの化学ってどうよ?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 炭素をつなげる王道反応:アルドール反応 (3)
  2. ダイヤモンドは砕けない
  3. Reaxysレクチャー&第9回平田メモリアルレクチャー
  4. 「男性型脱毛症薬が登場」新薬の承認を審議
  5. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition
  6. 研究留学術―研究者のためのアメリカ留学ガイド
  7. 有機リチウム試薬 Organolithium Reagents
  8. Dead Endを回避せよ!「全合成・極限からの一手」①
  9. Thomas R. Ward トーマス・ワード
  10. 個性あるTOC

関連商品

注目情報

注目情報

最新記事

Baird芳香族性、初のエネルギー論

第126回のスポットライトリサーチは、東京大学大学院工学系研究科(相田卓三教授) 博士後期課程1年の…

N末端選択的タンパク質修飾反応 N-Terminus Selective Protein Modification

N末端はタンパク鎖の中で1箇所しか存在しないため、これを標的とする修飾反応は必然的に高い位置・化学選…

デヒドロアラニン選択的タンパク質修飾反応 Dha-Selective Protein Modification

デヒドロアラニン(dehydroalanine, Dha)はセリンもしくはシステインから誘導される特…

DNAを切らずにゲノム編集-一塩基変換法の開発

ゲノム編集といえば、今流行りのCRISPR/Cas9を思い浮かべる方が多いと思います。CRISPR/…

文献管理ソフトを徹底比較!

今や、科学者向けの文献管理ソフトはよりどりみどりだ。その中から代表的な8つを検討した。タイト…

君はPHOZONを知っているか?

唐突ですがスマホでゲームやりますか?筆者はファミコン世代ということもあり、様々なゲームをやってき…

Chem-Station Twitter

PAGE TOP