[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (4)

[スポンサーリンク]

「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第4回は、触媒量のキラルプロモータを用いる条件、すなわち触媒的不斉アルドール反応について述べてみたいと思う。とりわけ1990~2000年代の間に大きな進歩を遂げた化学である。

第3回で述べたキラル補助基を用いる手法に比べ、信頼性や基質一般性の面で優れる例はさほど多くないため、現在でも研究は継続されている。全て紹介することは不可能であるため、ここではマイルストーンとなった研究報告に絞って紹介してみたい。

金属触媒を用いる不斉アルドール反応

● 触媒的不斉向山アルドール反応

アルドール反応に適用可能な実用的不斉触媒の開発に世界に先駆けて成功したのは、向山光昭らのグループであった。図1に示すようなスズ(II)トリフラートおよびプロリン由来の不斉配位子を用いる条件によって、高い選択性でアルドール成績体が得られる[1]。 この方法は、後に彼ら自身によって抗ガン天然物タキソールの全合成にも応用されている[2]。

図1:向山らによる触媒的不斉アルドール反応

図1:向山らによる触媒的不斉アルドール反応

図2:向山らによるタキソール合成への応用展開

図2:向山らによるタキソール合成への応用展開

α位に置換基を持たないアセテート型ドナーを用いる場合は、立体要請が少なく、前回紹介したEvansアルドール反応でもエナンチオ制御は困難とされていた。実用レベルの不斉触媒の開発にはじめて成功したのは、Eric M. Carreiraらのグループであった[3]。彼らは図3に示すような、かさ高いキラルチタン錯体をルイス酸触媒として用い、この問題の克服に成功している。

図3:Carreiraらによる触媒的不斉アルドール反応

図3:Carreiraらによる触媒的不斉アルドール反応

● 直接的不斉アルドール反応

向山法では、基質と同量のケイ素由来の廃棄物が生成してしまう。しかし、アルドール反応は、原理的にプロトン移動だけで進行しうる反応である。シリルエノラートを経由しない直接的アルドール反応(direct aldol reaction)が達成されれば、廃棄物が極少量で済む。アトムエコノミー・環境調和性の面で、より優れた反応となるわけだ。そのような不斉反応は酵素(アルドラーゼ)では知られていたが、人工触媒では当時実現されていなかった。

東京大学の柴崎正勝らは、独自に開発したランタントリス(ビナフトキシリチウム)触媒を用い、世界初の直接的触媒的不斉アルドール反応の開発に成功した[4a]。その後、水酸化カリウム添加条件(LLB-KOH)を用いる改良条件を報告した(図3)[4b]。

本法は向山反応が敷衍させた「交差アルドール反応は、単離可能なシリルエノラートを用いるもの」というパラダイムを揺さぶるインパクトを世界に与えた。後述する有機触媒がアルドール反応形式を基点に発展していった背景には、この研究成果が素地としてあった事情も無視できないだろう。

図4:柴崎らによる直接的触媒的不斉アルドール反応

図4:柴崎らによる直接的触媒的不斉アルドール反応

●水系溶媒中での不斉アルドール反応

有機溶媒を水に代替できれば、環境調和性の高い化学プロセスの実現が期待できる。また極性の高い生体関連化合物を標的とした変換なども視野に入れることが出来る。

東京大学の小林修らは、水系溶媒で実行可能な世界初の触媒的向山アルドール反応の開発に成功し、のちに不斉触媒化にも成功した[5]。酸素親和性の高いルイス酸は水中では容易に失活してしまい、触媒として用いることは不可能と考えられていたが、彼らはこの常識の枠組みを希土類トリフラートという独自開発したルイス酸を用いることで見事打ち破った。

図5:小林らによる水系溶媒中で進行する触媒的不斉アルドール反応

図5:小林らによる水系溶媒中で進行する触媒的不斉アルドール反応

● ケトンを求電子剤とする触媒的不斉アルドール反応

ケトンを求電子剤とする不斉アルドール反応は、ケトン自体の反応性の低さ、不斉面識別の困難さ、レトロアルドール反応の容易さなどから、アルデヒドの場合と比べて実施ハードルは格段に高くなる。

イリノイ大学のS.E.Denmarkらは、独自に開発したキラルビスN-オキシド触媒とトリクロロシリルケテンアセタールを用いて、非活性化型ケトンをアクセプターとする触媒的不斉アルドール反応に世界で始めて成功した [6a]。その後、柴崎らによって、より一般性に富む条件が開発されている[6b]。

図6: 非活性化型ケトンを用いる触媒的不斉アルドール反応(スキーム上:Denmark、下:柴崎)

図6: 非活性化型ケトンを用いる触媒的不斉アルドール反応

そして時代は有機触媒へ

当時スクリプス研究所に所属していたListBarbasLernerは、もともと抗体触媒の研究を主眼としていたが、その過程で単一のアミノ酸・プロリンが不斉アルドール反応の触媒として働くことを見いだしたのである[7](参考:もっとも単純な触媒 「プロリン」) 。2000年に報告されたこの報告は、アルドール反応のみならず、有機合成化学の歴史においてもまさに革命的な出来事だったといえるだろう。

反応式を見ての通り、触媒・溶媒以外は全く余分な試薬を必要としないため、元来アルドール反応が備えている原子効率の高さがフルに活かされた反応になっている。毒性や価格や扱いの難しさがしばしば問題となる金属も必要としない。この観点から、環境にはもちろん、経済的にも優しい反応条件になっている。

同年にMacMillanらによって開発されたイミニウム触媒と並び、この報告が世界に与えたインパクトは破格のものであった。これを契機に金属を使わない触媒―すなわち有機分子触媒の開発ラッシュに火がつくこととなった。

プロリン触媒を用いると、二種のアルデヒド間の交差アルドール反応も不斉制御を伴って進行することが実証されている[8]。本反応形式は自己縮合・ポリメリゼーションなどが併発するため実現最難関の一つとされていた。有機分子触媒の登場によってようやく達成されたひとつといえる。

図6: アルデヒド間の交差型触媒的不斉アルドール反応

図6: アルデヒド間の交差型触媒的不斉アルドール反応

このような膨大な研究過程をへて、アルドール反応の立体制御と触媒の実用性は格段の進歩を遂げた。そのおかげで今では、「触媒での不斉制御はやればできるもの」という見方も出るまでになったのである。

しかし先述したとおりこれで話は終わりではなく、現代でもアルドール反応の研究は継続されている。最先端の研究潮流は、立体制御とは別角度からの実用性を高める方針で取り組まれている。すなわち、これまで適用不可能だった反応剤を用いたり、基質一般性を格段に広げることを触媒の力で実現する、という方向に向かいつつある。

次回(最終回)では、そういった先端研究例をまとめて紹介してみたい。

関連文献

  1. (a) Mukaiyama, T.; Kobayashi, S.; Uchiro, H.; Shiina, I. Chem. Lett. 1990, 129. doi:10.1246/cl.1990.129 (b) Kobayashi, S.; Fujishita, Y.; Mukaiyama, T. Chem. Lett. 1990, 1455. doi:10.1246/cl.1990.1455
  2. Mukaiyama, T.; Shiina, I. et al. Chem. Eur. J. 1999, 5, 121. [DOI]
  3. Carreira, E. M. et al. J. Am. Chem. Soc. 1994, 116, 8837. DOI: 10.1021/ja00098a065
  4. (a) Yamada,Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew. Chem. Int. Ed. Engl. 1997, 36, 1871. doi:10.1002/anie.199718711 (b) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168. DOI: 10.1021/ja990031y
  5. (a) Kobayashi, S.; Hamada, T.; Nagayama, S.; Manabe, K. Org. Lett. 2001, 3, 165. DOI: 10.1021/ol006830z (b) Hamada, T.; Manabe, K.; Ishikawa, S.; Nagayama, S.; Shiro, M.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 2989. DOI: 10.1021/ja028698z (c) 濱田知明, 眞鍋敬, 小林修 有機合成化学協会誌, 2003, 61, 445. doi:10.5059/yukigoseikyokaishi.61.445
  6. (a) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002, 124, 4233. DOI: 10.1021/ja025670e (b) Denmark, S. E.; Fan, Y., Eastgate, M. D. J. Org. Chem. 2005, 70, 5235. DOI: 10.1021/jo0506276 (c) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7164.DOI: 10.1021/ja061815w
  7. (a) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. DOI: 10.1021/ja994280y (b) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386. DOI: 10.1021/ja001460v (c) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573. DOI: 10.1021/ol006976y (d) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc. 2001, 123, 5260. DOI: 10.1021/ja010037z
  8. Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. DOI: 10.1021/ja0262378
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. もっと化学に光を! 今さらですが今年は光のアニバーサリーイヤー
  2. メルマガ有機化学 (by 有機化学美術館) 刊行中!!
  3. いま企業がアカデミア出身者に期待していること
  4. 芳香族トリフラートからアリールラジカルを生成する
  5. 有機合成化学協会誌2022年9月号:π-アリルパラジウム・ポリエ…
  6. カルベン転移反応 ~フラスコ内での反応を生体内へ~
  7. SNS予想で盛り上がれ!2020年ノーベル化学賞は誰の手に?
  8. 化学コミュニケーション賞2023を受賞しました!

注目情報

ピックアップ記事

  1. 第10回 太陽光エネルギーの効率的変換に挑むー若宮淳志准教授
  2. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2
  3. 第35回 生物への応用を志向した新しいナノマテリアル合成― Mark Green教授
  4. 文献検索サイトをもっと便利に:X-MOLをレビュー
  5. 積水化学、工業用接着剤で米最大手と提携
  6. たばこと塩の博物館
  7. 元素に恋して: マンガで出会う不思議なelementsの世界
  8. 韓国に続き日本も深刻化?トラック運送に必要不可欠な尿素水が供給不安定
  9. ケクレン、伸長(新調)してくれん?
  10. 有機合成化学協会誌2024年1月号:マイクロリアクター・官能基選択的水和・ジラジカル・フルオロフィリック効果・コバレントドラッグ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

【10月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスを用いたゾルゲル法とプロセス制御ノウハウ(2)

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

日本プロセス化学会2024ウインターシンポジウム

有機合成化学を基盤に分析化学や化学工学なども好きな学生さん、プロセス化学を知る絶好の…

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP