[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (4)

[スポンサーリンク]

「有機化学反応の王道」とも呼ばれるアルドール反応。その特徴、マイルストーン的研究、最近の動向について解説していくシリーズ記事である。

第4回は、触媒量のキラルプロモータを用いる条件、すなわち触媒的不斉アルドール反応について述べてみたいと思う。とりわけ1990~2000年代の間に大きな進歩を遂げた化学である。

第3回で述べたキラル補助基を用いる手法に比べ、信頼性や基質一般性の面で優れる例はさほど多くないため、現在でも研究は継続されている。全て紹介することは不可能であるため、ここではマイルストーンとなった研究報告に絞って紹介してみたい。

金属触媒を用いる不斉アルドール反応

● 触媒的不斉向山アルドール反応

アルドール反応に適用可能な実用的不斉触媒の開発に世界に先駆けて成功したのは、向山光昭らのグループであった。図1に示すようなスズ(II)トリフラートおよびプロリン由来の不斉配位子を用いる条件によって、高い選択性でアルドール成績体が得られる[1]。 この方法は、後に彼ら自身によって抗ガン天然物タキソールの全合成にも応用されている[2]。

図1:向山らによる触媒的不斉アルドール反応

図1:向山らによる触媒的不斉アルドール反応

図2:向山らによるタキソール合成への応用展開

図2:向山らによるタキソール合成への応用展開

α位に置換基を持たないアセテート型ドナーを用いる場合は、立体要請が少なく、前回紹介したEvansアルドール反応でもエナンチオ制御は困難とされていた。実用レベルの不斉触媒の開発にはじめて成功したのは、Eric M. Carreiraらのグループであった[3]。彼らは図3に示すような、かさ高いキラルチタン錯体をルイス酸触媒として用い、この問題の克服に成功している。

図3:Carreiraらによる触媒的不斉アルドール反応

図3:Carreiraらによる触媒的不斉アルドール反応

● 直接的不斉アルドール反応

向山法では、基質と同量のケイ素由来の廃棄物が生成してしまう。しかし、アルドール反応は、原理的にプロトン移動だけで進行しうる反応である。シリルエノラートを経由しない直接的アルドール反応(direct aldol reaction)が達成されれば、廃棄物が極少量で済む。アトムエコノミー・環境調和性の面で、より優れた反応となるわけだ。そのような不斉反応は酵素(アルドラーゼ)では知られていたが、人工触媒では当時実現されていなかった。

東京大学の柴崎正勝らは、独自に開発したランタントリス(ビナフトキシリチウム)触媒を用い、世界初の直接的触媒的不斉アルドール反応の開発に成功した[4a]。その後、水酸化カリウム添加条件(LLB-KOH)を用いる改良条件を報告した(図3)[4b]。

本法は向山反応が敷衍させた「交差アルドール反応は、単離可能なシリルエノラートを用いるもの」というパラダイムを揺さぶるインパクトを世界に与えた。後述する有機触媒がアルドール反応形式を基点に発展していった背景には、この研究成果が素地としてあった事情も無視できないだろう。

図4:柴崎らによる直接的触媒的不斉アルドール反応

図4:柴崎らによる直接的触媒的不斉アルドール反応

●水系溶媒中での不斉アルドール反応

有機溶媒を水に代替できれば、環境調和性の高い化学プロセスの実現が期待できる。また極性の高い生体関連化合物を標的とした変換なども視野に入れることが出来る。

東京大学の小林修らは、水系溶媒で実行可能な世界初の触媒的向山アルドール反応の開発に成功し、のちに不斉触媒化にも成功した[5]。酸素親和性の高いルイス酸は水中では容易に失活してしまい、触媒として用いることは不可能と考えられていたが、彼らはこの常識の枠組みを希土類トリフラートという独自開発したルイス酸を用いることで見事打ち破った。

図5:小林らによる水系溶媒中で進行する触媒的不斉アルドール反応

図5:小林らによる水系溶媒中で進行する触媒的不斉アルドール反応

● ケトンを求電子剤とする触媒的不斉アルドール反応

ケトンを求電子剤とする不斉アルドール反応は、ケトン自体の反応性の低さ、不斉面識別の困難さ、レトロアルドール反応の容易さなどから、アルデヒドの場合と比べて実施ハードルは格段に高くなる。

イリノイ大学のS.E.Denmarkらは、独自に開発したキラルビスN-オキシド触媒とトリクロロシリルケテンアセタールを用いて、非活性化型ケトンをアクセプターとする触媒的不斉アルドール反応に世界で始めて成功した [6a]。その後、柴崎らによって、より一般性に富む条件が開発されている[6b]。

図6: 非活性化型ケトンを用いる触媒的不斉アルドール反応(スキーム上:Denmark、下:柴崎)

図6: 非活性化型ケトンを用いる触媒的不斉アルドール反応

そして時代は有機触媒へ

当時スクリプス研究所に所属していたListBarbasLernerは、もともと抗体触媒の研究を主眼としていたが、その過程で単一のアミノ酸・プロリンが不斉アルドール反応の触媒として働くことを見いだしたのである[7](参考:もっとも単純な触媒 「プロリン」) 。2000年に報告されたこの報告は、アルドール反応のみならず、有機合成化学の歴史においてもまさに革命的な出来事だったといえるだろう。

反応式を見ての通り、触媒・溶媒以外は全く余分な試薬を必要としないため、元来アルドール反応が備えている原子効率の高さがフルに活かされた反応になっている。毒性や価格や扱いの難しさがしばしば問題となる金属も必要としない。この観点から、環境にはもちろん、経済的にも優しい反応条件になっている。

同年にMacMillanらによって開発されたイミニウム触媒と並び、この報告が世界に与えたインパクトは破格のものであった。これを契機に金属を使わない触媒―すなわち有機分子触媒の開発ラッシュに火がつくこととなった。

プロリン触媒を用いると、二種のアルデヒド間の交差アルドール反応も不斉制御を伴って進行することが実証されている[8]。本反応形式は自己縮合・ポリメリゼーションなどが併発するため実現最難関の一つとされていた。有機分子触媒の登場によってようやく達成されたひとつといえる。

図6: アルデヒド間の交差型触媒的不斉アルドール反応

図6: アルデヒド間の交差型触媒的不斉アルドール反応

このような膨大な研究過程をへて、アルドール反応の立体制御と触媒の実用性は格段の進歩を遂げた。そのおかげで今では、「触媒での不斉制御はやればできるもの」という見方も出るまでになったのである。

しかし先述したとおりこれで話は終わりではなく、現代でもアルドール反応の研究は継続されている。最先端の研究潮流は、立体制御とは別角度からの実用性を高める方針で取り組まれている。すなわち、これまで適用不可能だった反応剤を用いたり、基質一般性を格段に広げることを触媒の力で実現する、という方向に向かいつつある。

次回(最終回)では、そういった先端研究例をまとめて紹介してみたい。

関連文献

  1. (a) Mukaiyama, T.; Kobayashi, S.; Uchiro, H.; Shiina, I. Chem. Lett. 1990, 129. doi:10.1246/cl.1990.129 (b) Kobayashi, S.; Fujishita, Y.; Mukaiyama, T. Chem. Lett. 1990, 1455. doi:10.1246/cl.1990.1455
  2. Mukaiyama, T.; Shiina, I. et al. Chem. Eur. J. 1999, 5, 121. [DOI]
  3. Carreira, E. M. et al. J. Am. Chem. Soc. 1994, 116, 8837. DOI: 10.1021/ja00098a065
  4. (a) Yamada,Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki, M. Angew. Chem. Int. Ed. Engl. 1997, 36, 1871. doi:10.1002/anie.199718711 (b) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168. DOI: 10.1021/ja990031y
  5. (a) Kobayashi, S.; Hamada, T.; Nagayama, S.; Manabe, K. Org. Lett. 2001, 3, 165. DOI: 10.1021/ol006830z (b) Hamada, T.; Manabe, K.; Ishikawa, S.; Nagayama, S.; Shiro, M.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 2989. DOI: 10.1021/ja028698z (c) 濱田知明, 眞鍋敬, 小林修 有機合成化学協会誌, 2003, 61, 445. doi:10.5059/yukigoseikyokaishi.61.445
  6. (a) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002, 124, 4233. DOI: 10.1021/ja025670e (b) Denmark, S. E.; Fan, Y., Eastgate, M. D. J. Org. Chem. 2005, 70, 5235. DOI: 10.1021/jo0506276 (c) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7164.DOI: 10.1021/ja061815w
  7. (a) List, B.; Lerner, R. A.; Barbas, C. F., III J. Am. Chem. Soc. 2000, 122, 2395. DOI: 10.1021/ja994280y (b) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386. DOI: 10.1021/ja001460v (c) List, B.; Pojarliev, P.; Castello, C. Org. Lett. 2001, 3, 573. DOI: 10.1021/ol006976y (d) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F., III J. Am. Chem. Soc. 2001, 123, 5260. DOI: 10.1021/ja010037z
  8. Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. DOI: 10.1021/ja0262378
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「一家に1枚」ポスターの企画募集
  2. 第二回ケムステVシンポ「光化学へようこそ!」開催報告
  3. MOF 結晶表面の敏感な応答をリアルタイム観察
  4. 書物から学ぶ有機化学 1
  5. コーヒーブレイク
  6. 近年の量子ドットディスプレイ業界の動向
  7. 【太陽HD】世界初!セルロースナノファイバー複合電子材料の研究
  8. ポリセオナミド :海綿由来の天然物の生合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 未解明のテルペン類の生合成経路を理論的に明らかに
  2. 2011年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  3. 【第11回Vシンポ特別企画】講師紹介②:前田 勝浩 先生
  4. 超薄型、曲げられるMPU開発 セイコーエプソン
  5. Natureが査読無しの科学論文サイトを公開
  6. 大学院生のつぶやき:第5回HOPEミーティングに参加してきました
  7. ダイエット食から未承認薬
  8. 触媒的C-H活性化反応 Catalytic C-H activation
  9. エーザイ 抗がん剤「ハラヴェンR」日米欧で承認取得 
  10. 化学素人の化学読本

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントは、医薬分野向けに事業・開発課題のソリューションとして、マイクロ波の適用例や効…

バイオマスからブタジエンを生成する新技術を共同開発

日本ゼオンは、理研、横浜ゴムと共同で設置している「バイオモノマー生産研究チーム」の研究により、バイオ…

【ケムステSlackに訊いてみた②】化学者に数学は必要なのか?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

電子のやり取りでアセンの分子構造を巧みに制御

第308回のスポットライトリサーチは、北海道大学大学院総合化学院(鈴木研究室)・張本 尚さんにお願い…

第147回―「カリックスアレーンを用いる集合体の創製」Tony Coleman教授

第147回の海外化学者インタビューは、アンソニー・W・コールマン(通称トニー)教授です。フランスのリ…

ノーコードでM5Stack室内環境モニターを作ろう

COVID-19の影響で居室や実験室の換気状況を見直された方は多いと思います。化学系の実験室は定期的…

「化学物質の審査及び製造等の規制に関する法律施行令の一部を改正する政令」が閣議決定されました

4月16日、「化学物質の審査及び製造等の規制に関する法律施行令の一部を改正する政令」が、閣議決定され…

液相における粒子間水素移動によって加速されるアルカンとベンゼンの脱水素カップリング反応

第307回のスポットライトリサーチは、東京工業大学 物質理工学院 応用化学系(本倉研究室)・高畠 萌…

Chem-Station Twitter

PAGE TOP