[スポンサーリンク]

化学者のつぶやき

アミロイド線維を触媒に応用する

[スポンサーリンク]

触媒機能をもつタンパク質は「酵素」と総称されます。大抵は分子量1万を超える大きなものです。

しかしその活性部位は、全体に比してさほど大きな割合を占めていません。ここまで巨大なものじゃ無くとも、明確な構造のペプチドであれば、触媒の土台として使えるんじゃ無かろうか・・・?

そういう発想から生まれたペプチド性触媒が、2014年のNature Chemistry誌に報告されました。その名も「アミロイド線維触媒」です[1]。今回はこれを取りあげて見たいと思います。

アミロイドって何?

アミロイド(amyloid)とは、クロスβシート構造をもつ線維を形成し、不溶性となるペプチド(タンパク質)の総称です。小さな分子サイズでありながら比較的明確な構造をとれるという、他のタンパクには無い特性を持っています。

アミロイドは様々な難治性疾患(アミロイドーシス)に関連があるとされています。たとえばアルツハイマー病は、アミロイドβタンパクが凝集することで引き起こされるのでは?との仮説が古くから提唱されています。

アミロイドβ(1-40)のクロスβシート構造モデル(論文[2]より)

アミロイドβ(1-40)のクロスβシート構造モデル(論文[2]より)

すぐさま不溶性の線維となってしまうためとにかく扱いづらく、生化学的性質を調べるだけでもしばしば難航します。病原ペプチドでもあるため、研究者からは困ったちゃん扱いされがちな分子でもあります。

 

困りものを役立つものに

今回の研究のポイントは、アミロイド線維を形成しうるペプチド(なんとわずか7残基!)が自己集積によって触媒機能を発現できることを、初めて示したことにあります。

疎水性アミノ酸と親水性アミノ酸が交互に並ぶアミロイドペプチドLKLKLKL[3]を参考に、著者らはリジンをヒスチジンに変えた配列、Ac-LHLHLHL-CONH2を用意しました。

これに亜鉛(ZnCl2)を混ぜてやります。するとアミロイド線維のヒスチジン側鎖が配位子として亜鉛を担持します。ヒスチジン側鎖は単座配位なので、普通の短鎖ペプチドでは金属が上手く担持されません。しかし一旦アミロイド線維を形成すれば、ペプチド同士・ヒスチジン側鎖同士が近接し、亜鉛を多座で担持出来るようになります。またこのキレート結合によって、土台となる線維構造も安定化されます。CD解析・蛍光アッセイを行ってみると、βシートに富む凝集体を形成すること、つまりアミロイド性を有することが確認されました。

こうして出来た金属-アミロイド錯体を使って、著者らは触媒応用を試みています。亜鉛の複核ルイス酸触媒として働くだろうとの発想です。果たして、4-ニトロフェニル酢酸エステルの加水分解反応に対する触媒能を持つことが示されました。

著者らはその後、アミノ酸配列を種々変えたペプチドを用意し、構造-触媒活性相関を行っています。最終的に最も活性の高いペプチド配列、Ac-IHIHIQI-CONH2を見いだすことに成功しました。

amyloid_cat_2

亜鉛キレート型アミロイド触媒の模式図(論文[1]より引用・改変)

反応速度解析を行うと、このアミロイド触媒は酵素のように振る舞うこと、すなわち飽和特性や活性のpH依存性などがあることが示されました。

既に述べたとおり、タンパク質が触媒能を発揮するには、長鎖ペプチドが適切に降りたたまれてできる巨大な3次構造が必要と考えられてきました。しかし本報告のように「短いペプチドが寄せ集まることで規則構造を形成し、触媒能が発揮される」という事実は興味深い知見といえます。

この事実をして著者らは、「アミロイド線維は進化の過程で、酵素に至るまでの中間形としての役割があったのかもしれない」と触れています。こちらも興味深い着眼だと思います。

 

「アミロイド触媒」の可能性

ペプチドは固相法で迅速合成できる分子であるため、無限の構造展開が可能です。今回はごくごく簡単な反応への応用しか示されていませんが、金属との組み合わせ次第では、別種の触媒反応へも展開可能かも知れません。

またそもそもがペプチドなので、生体適合性の高い触媒の創製につながりうる考え方だとも思えます。アミロイドにつきものの毒性をどうにか抑えることができれば、低分子触媒〜酵素の中間を埋める「第三の触媒」としての活路を見出せるやもしれません。

触媒構造が激しい条件下でも安定かどうか、触媒活性をどこまで上げられるのか、化学選択性が出せる触媒になるのか・・・ということは未だ気になりますが、今後の研究を待つ必要があるでしょう。

取り扱いが難しいとされる「アミロイド」ですが、これ以外にも、ナノ材料バイオテクノロジーなどへの応用先も模索されつつあるようです[4]。今後どういう発展を見せていくか、要注目の方向ですね。

関連論文

  1.  (a) “Short peptides self-assemble to produce catalytic amyloids” Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.;Smith,T. A.; Hu,X.; DeGrado, W. F.; Korendovych, I. V. Nat. Chem. 2014, 6, 303. doi:10.1038/nchem.1894 (b) “Protein chemistry: Catalytic amyloid fibrils” Aumüller, T.; Fändrich, M. Nat. Chem. 2014, 6, 273. doi:10.1038/nchem.1904
  2. “A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR” Robert Tycko et al. Proc. Natl. Acad. Sci. USA 2002, 99, 16742. doi:10.1073/pnas.262663499
  3. (a) “Induction of peptide conformation at apolar/water interfaces: a study with model peptides of defined hydrophobic periodicity.” DeGrado, W. F. ; Lear, J. D. J. Am. Chem. Soc. 1985, 107, 7684. DOI: 10.1021/ja00311a076 (b) “Protein design, a minimalist approach.” DeGrado, W. F.; Wasserman, Z. R.; Lear, J. D. Science 1989, 243, 622. DOI:10.1126/science.2464850
  4.  (a) “Nanomechanics of functional and pathological amyloid materials” Knowles, T. P. J.; Buehler, M. J. Nature Nanotech. 2011, 6, 469. doi:10.1038/nnano.2011.102 (b) “Amyloids: Not Only Pathological Agents but Also Ordered Nanomaterials” Cherny, I.; Gazit, E. Angew. Chem. Int. Ed. 2008, 47, 4062. DOI: 10.1002/anie.200703133

関連書籍

外部リンク

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 3.11 14:46 ②
  2. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!
  3. 生きた細胞内でケイ素と炭素がはじめて結合!
  4. 「進化分子工学によってウイルス起源を再現する」ETH Zuric…
  5. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議…
  6. 炭素をつなげる王道反応:アルドール反応 (4)
  7. 電気ウナギに学ぶ:柔らかい電池の開発
  8. 未来博士3分間コンペティション2021(オンライン)挑戦者募集中…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 含ケイ素四員環-その2-
  2. 有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環
  3. アンドリュー・ハミルトン Andrew D. Hamilton
  4. シグマアルドリッチ器具・消耗品大特価キャンペーン【2018年3月30日まで】
  5. 実例で分かるスケールアップの原理と晶析【終了】
  6. 第152回―「PETイメージングに活用可能な高速標識法」Philip Miller講師
  7. ハラスメントから自分を守るために。他人を守るために【アメリカで Ph.D. を取る –オリエンテーションの巻 その 2-】
  8. バルビエ・ウィーランド分解 Barbier-Wieland Degradation
  9. 私がケムステスタッフになったワケ(3)
  10. 「第22回 理工系学生科学技術論文コンクール」の応募を開始

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年12月
« 11月   1月 »
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜

第342回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科・宮澤友樹 さんにお願いし…

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP