[スポンサーリンク]

D

ジスルフィド架橋型タンパク質修飾法 Disulfide-Bridging Protein Modification

[スポンサーリンク]

システイン(Cysteine, Cys)を標的とするタンパク質修飾法はその信頼性から盛んに用いられているが、総じて以下に述べる問題点を有する。

  • 高反応性の裏返しとして、複数のCysを区別した位置選択的反応を進行させ、均質修飾体を製造することが困難である。
  • タンパク質中のCysはほとんどジスルフィドとして存在しており、unpairdなCysを活用するには、Cysを人為的に導入したリコンビナントタンパクの製造がしばしば必要になる。
  • 汎用されるCys-マレイミド共役法は、その付加体が細胞内還元条件に不安定であるため、応用が限られる。
  • 表面露出度の高いS-S結合は、タンパク質高次構造の安定性に関わる事が多く、還元的S-S切断→Cys修飾を行なうことで構造の不安定化が引き起こされがちである。

ジスルフィド架橋法(disulfide bridging)は、これらの問題点を解決するための方法論として考案された。もともとS-S結合だった部分を最少原子数で架橋することによって、安定かつ均質な修飾体が得られ、その高次構造もおおむね保持される。

基本文献

  • Brocchini, S.; Balan, S.; Godwin, A.; Choi, J.-W. ; Zloh, M.; Shaunak, S. Nat. Protoc. 2006, 1, 2241. doi:10.1038/nprot.2006.346
  • Zloh, M.; Shaunak, S.; Balan, S.; Brocchini, S. Nat. Protoc. 2007, 2, 1070. doi:10.1038/nprot.2007.119
<Review>
<Chemist’s Guide>

反応例

様々な試薬が開発されており、安定性、収率、毒性、preactivation手順などにそれぞれ違いがある[1-7]。

テトラジンジクロリド試薬による架橋構造はSPAAC反応の足がかりとして機能しうる[8]。

パーフルオロベンゼン[9]、ジビニルスルホンアミド[10]などもステープルペプチドの合成目的に開発されている。

実験のコツ・テクニック

S-S結合の還元的切断には、トリス(2-カルボキシエチル)ホスフィン(TCEP)塩酸塩が用いられる。広範なpHで使用可能な点が特徴である(1.5 < pH < 8.5)。

ジチオスレイトール(DTT)もより強力な還元剤として頻用されるが、中性条件近傍(pH>7)でしか機能しない点、架橋試薬に対する反応性を持つ点などが欠点である。

参考文献

  1. bissulfone: Shaunak, S.; Godwin, A.; Choi, J.-W. ; Balan, S.; Pedone, E.; Vijayarangam, D.; Heidelberger, S.; Teo, I.; Zloh, M.; Brocchini, S. Nat. Chem. Biol. 2006, 2, 312. doi:10.1038/nchembio786
  2. disubstituted maleimide: (a) Smith, M. E. B.; Schumacher, F. F.; Ryan, C. P.; Tedaldi, L. M.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J. R. J. Am. Chem. Soc. 2010, 132, 1960. DOI: 10.1021/ja908610s (b) Schumacher, F. F.; Nobles, M.; Ryan, C. P.; Smith, M. E. B.; Tinker, A.; Caddick, S.; Baker, J. R. Bioconjugate Chem. 2011, 22, 132. DOI: 10.1021/bc1004685
  3. monosubstituted maleimide: (a) Marculescu, C.; Kossen, H.; Morgan, R. E.; Mayer, P.; Fletcher, S.; Tolner, B.; Chester, K.; Jones, L. H.; Baker, J. R. Chem. Commun. 2014, 50, 7139. doi:10.1039/C4CC02107J (b) Richards, D. A.; Fletcher, S. A.; Nobles, M.; Kossen, H.; Tedaldi, L.; Chudasama, V.; Tinker, A.; Baker, J. R. Org. Biomol. Chem. 2016, 14, 455. doi:10.1039/C5OB02120K
  4. Pfisterer, A.; Eisele, K.; Chen, X.; Wagner, M.; Müllen, K.; Weil, T. Chem. Eur. J. 2011, 17, 9697. DOI: 10.1002/chem.201100287
  5. arsenic acid: Wilson, P.; Anastasaki, A.; Owen, M. R.; Kempe, K.; Haddleton, D. M.; Mann, S. K.; Johnston, A. P. R.; Quinn, J. F.; Whittaker, M. F.; Hogg, P. J.; Davis, T. P. J. Am. Chem. Soc. 2015, 137, 4215. DOI: 10.1021/jacs.5b01140
  6. dibromopyridazinedione: (a) Chudasama, V.; Smith, M. E. B.; Schumacher, F. F.; Papaioannou, D.; Waksman, G.; Baker, J. R.; Caddick, S. Chem. Commun. 2011, 47, 8781. doi:10.1039/C1CC12807H (b) Maruani, A.; Smith, M. E. B.; Miranda, E.; Chester, K. A.; Chudasama, V.; Caddick, S. Nat. Commun. 2015, 6, 6645. doi:10.1038/ncomms7645 (c) Lee, M. T. W.; Maruani, A.; Baker, J. R.; Caddick, S.; Chudasama, V. Chem. Sci. 2016, 7, 799. doi:10.1039/C5SC02666K
  7. UV-alkyne: Griebenow, N.; Dilma, A. M.;Greven, Å. S.; Brse, S. Bioconjugate Chem. 2016, 27, 911. DOI:10.1021/acs.bioconjchem.5b00682
  8. Brown, S. P.; Smith, A. B. J. Am. Chem. Soc. 2015, 137, 4034. DOI: 10.1021/ja512880g
  9. Spokoyny, A. M.; Zou, Y.; Ling, J. J.; Yu, H.; Lin, Y.-S.; Pentelute, B. L. J. Am. Chem. Soc. 2013, 135, 5946. DOI: 10.1021/ja400119t
  10. Divinylsulfonamides: Li, Z.; Huang, R.; Xu, H.; Chen, J.; Zhan, Y.; Zhou, X.; Chen, H.; Jiang, B. Org. Lett. 2017, 19, 4972. DOI: 10.1021/acs.orglett.7b02464

関連書籍

[amazonjs asin=”0123822394″ locale=”JP” title=”Bioconjugate Techniques, Third Edition”][amazonjs asin=”1493960962″ locale=”JP” title=”Bioconjugation Protocols: Strategies and Methods (Methods in Molecular Biology)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 重水素標識反応 Deuterium Labeling React…
  2. メリフィールド ペプチド固相合成法 Merrifield Sol…
  3. 硫黄-フッ素交換反応 Sulfur(VI)-Fluoride E…
  4. ヤコブセン転位 Jacobsen Rearrangement
  5. 史 不斉エポキシ化 Shi Asymmetric Epoxida…
  6. シャープレス不斉ジヒドロキシル化 Sharpless Asyem…
  7. コーンフォース転位 Cornforth Rearrangemen…
  8. バートン反応 Barton Reaction

注目情報

ピックアップ記事

  1. ニコラス反応 Nicholas Reaction
  2. 究極のナノデバイスへ大きな一歩:分子ワイヤ中の高速電子移動
  3. 私が思う化学史上最大の成果-2
  4. イグノーベル賞2023が発表:祝化学賞復活&日本人受賞
  5. 化学系ブログのインパクトファクター
  6. 化学かるた:元素編ー世界化学年をちなみ
  7. ブレイズ反応 Blaise Reaction
  8. モヴァッサージ脱酸素化 Movassaghi Deoxigenation
  9. 【4月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスとは~基礎技術(構造、反応性)の紹介~
  10. デヴィッド・シュピーゲル David A. Spiegel

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP