[スポンサーリンク]

スポットライトリサーチ

安全性・耐久性・高活性を兼ね備えた次世代型スマート触媒の開発

[スポンサーリンク]

第317回のスポットライトリサーチは、大阪大学大学院基礎工学研究科(水垣研究室)・山口 渉 助教 にお願いしました。

先日のスポットライトリサーチでもご紹介したとおり、生物資源(バイオマス)を工業視点から効率変換しうる固体触媒系は、持続可能な化学生産プロセス実現の観点で注目を集めています。今回紹介するのは、様々な化学原料となるマルトース(麦芽糖)を、世界最高効率にて水素還元できる固体触媒を開発したという成果です。ACS Sustainable Chemistry & Engineering誌 原著論文およびCover Pictureプレスリリースに公開されています。

“Support-Boosted Nickel Phosphide Nanoalloy Catalysis in the Selective Hydrogenation of Maltose to Maltitol”
Yamaguchi, S.; Fujita, S.; Nakajima, K.; Yamazoe, S.; Yamasaki, J.; Mizugaki, T.; Mitsudome, T.  ACS Sustainable Chem. Eng. 2021, 9,  6347–6354. doi:10.1021/acssuschemeng.1c00447

研究を現場で指揮された満留 敬人 准教授から、山口さんについて以下の人物評を頂いています。こんなマッチョな研究世界の中でも、強く生きてくださいね!(笑) それでは今回もインタビューをお楽しみください!

 気持ち悪い。こういった機会に、いいおっさんの私(44歳)がいいおっさんの山口先生(37歳)をヨイショする、定型的な言葉の羅列(優秀・研究大好き・粘り強い)を書くことが気持ち悪いです。さらに、読者の誰もがこのような茶番に心底興味がないと思うと書く気が失せます。といっても、生長先生のせっかくの好意を無下にはできないので本音を少しだけ。
山口先生はプロなので、彼が、優秀で、研究大好きで、粘り強いのは当たり前で、また、彼自身がどうありたいのか解っている人なので、とりたてて私から言うことは何もありません。山口先生は、支離滅裂な論文原稿を書いてきては私に叱り飛ばされ、翌朝には、何もなかったかのように再びヒドい原稿を躊躇なく見せに来るといった、瞬発的かつ持久的反復運動を行うため、ドM、または、何か特別な習性を持っていると思っています。山口先生は、これからも彼の自由意志に基づき、自然科学に驚き、つまずき、揺れ、迷い、そして、自身の常識が砕け散るといった、魂が動かされる研究体験を通して邁進し、その強力な推進力に、私を含め多くの学生・研究者が巻き込まれていくと思います。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

化学工業における触媒では、高い活性や選択性を示すだけでなく、耐久性や安全性などの化学プロセス全体を考慮した高性能な触媒の開発が必要です。私たちの研究グループでは、持続可能な社会の実現に向け、安全性・耐久性・高活性を兼ね備える次世代型触媒(スマート触媒)の開発を行っています。例えば、現在、化学工業で使われる水素化反応用の触媒は、安価な非貴金属を用いていますが、発火性が高く危険です。さらに、活性が不十分であるため、高温・高水素圧を必要とします。一方、私たちは最近、非貴金属の結晶格子にリンを導入したナノ合金触媒を、独自の手法で開発しました。この触媒は、発火性がなく安全で、かつ温和な反応条件で様々な水素化反応を効率よく促進します。さらに、これらの触媒は、簡便に再使用を行うことができ、高い耐久性を示します。興味深いことに、リン化金属ナノ合金は非常に優れた触媒機能を有するにもかかわらず、これまで有機合成に応用した例はほとんどありませんでした。そこで私たちは、独自に開発したこの合金ナノ粒子触媒を用いて、現行の様々な水素化反応プロセスをクリーンかつ高効率な次世代型触媒プロセスへ代替していこうと考えています。
今回私たちは、ニッケルとリンを合金化した直径5ナノメートルサイズのナノ粒子(nano-Ni2P)をマグネシウムとアルミニウムの複水酸化物であるハイドロタルサイト(HT: Mg6Al2(OH)16CO3·4H2O)と複合化した触媒(nano-Ni2P/HT、図1)を開発し、マルトース(麦芽糖)からマルチトール(還元麦芽糖)の還元反応に高活性を示すことを見出しました(図2)。食品添加物や甘味料として使われるマルチトールは、同じ糖アルコールであるソルビトールに次ぐ需要を持つ高付加価値の機能性化学品であり、マルトースの水素化反応は、マルチトールを合成する最も重要な反応です。

 nano-Ni2P/HTはこれまでの工業触媒と異なり、発火性がなく空気中で安定に取り扱うことができ、温和な反応条件下でマルトースを還元し、これまでに報告されている非貴金属触媒の中で最も高い効率で対応するマルチトールを与えます。世界で初めて常温下または常圧水素下においてマルトースの水素化反応を促進し、その活性は貴金属であるルテニウム触媒に匹敵します。また、本触媒は実用的な観点から重要である高濃度のマルトース溶液(50 wt%)にも適用できます。さらに、開発した触媒は、反応溶液から容易に分離ができ、回収した触媒を再びマルトースの水素化反応に用いても触媒の活性低下は見られず、高活性を維持したまま繰り返し使用できることがわかりました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

工夫というより、思い付きでリン化ニッケルとHTを複合化したnano-Ni2P/HTを用いてマルトースの還元反応を試したところ、出てきたHPLCチャートをみて驚きました!原料は完全に消え、生成物のみが検出されました。また興味深いことに、リン化ニッケルを単独で用いた場合と比べて、目的生成物の収率が300倍以上も向上しています。この触媒には何かとてつもない力が備わっているな、と実感できた瞬間でもありました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

上述しましたが、なぜリン化ニッケルとHTを複合化すると異常に高い触媒活性が発現したのか?その触媒機能の発現因子の解明が難しかったです。所属研究室の水垣教授、満留准教授の協力の下、様々な分光学的手法を検討し、構造-活性相関の解明を目指しました。その結果、配位不飽和サイトを多く有するリン化ニッケルナノ合金が水素を活性し、ハイドロタルサイトが基質のカルボニル基を活性化する、多元素協働触媒作用が界面近傍で発現することによって、反応が効率的に促進することが明らかになりました(図3)。

Q4. 将来は化学とどう関わっていきたいですか?

私は学生時代に天然物化学を専門としてきました。そして今は(固体)触媒化学に取り組んでいます。これまでの経験に基づいた、自分ならではの視点を大切にしながら、学生たちともっとすごい・ワクワクする触媒研究をしていきたい、という思いをもっています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は博士取得後、大学での研究機会を頂きましたが、その後企業に転出し、昨年度から再び大学に戻るチャンスを得ることができました。一度きりの研究者人生!悔いの残らぬよう研究したいと思い、再び大学に戻る決心をしました(でもやっぱり転居続きで家族には申し訳なかったけれども…)。会社と大学どちらも経験してきて今改めて思うのは、大学での研究は、自分の人生を懸けて取り組むことができる、非常にやりがいのある仕事だということです。そして今、研究に思い切り取り組める素晴らしい環境があります。学生の皆様にも、本気になって取り組める、完全燃焼できる事を見つけてほしいです。

最後に、このような機会を与えてくださったChem-Stationスタッフの皆様にも深謝申し上げます。

研究者の略歴

名前:山口 渉
所属(大学・学部・研究室):大阪大学大学院基礎工学研究科物質創成専攻化学工学領域触媒設計学グループ・水垣研究室
研究テーマ:環境調和型液相分子変換反応を指向した高活性固体触媒開発
経歴:
2007年: 東京工業大学工学部化学工学科 卒業
2012年: 東京工業大学大学院理工学研究科応用化学専攻(高橋孝志教授) 博士課程修了 博士(工学)
2012年4月-2012年12月: 日本学術振興会 海外特別研究員(PD)
ドイツマックスプランク分子生理学研究所 訪問研究員(Herbert Waldmann教授)
2013年1月-2016年3月: 東京工業大学大学院総合理工学研究科化学環境学専攻 助教(馬場俊秀教授)
2016年4月-2017年5月: 東京工業大学物質理工学院応用化学系 助教
2017年6月-2020年3月: 豊田中央研究所 研究員(稲垣伸二シニアフェロー)
2020年4月-: 大阪大学大学院基礎工学研究科物質創成専攻 助教(水垣共雄教授)

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 合成小分子と光の力で細胞内蛋白質の局在を自在に操る!
  2. 高分子鎖デザインがもたらすポリマーサイエンスの再創造
  3. LEGO ゲーム アプローチ
  4. 実験教育に最適!:鈴木ー宮浦クロスカップリング反応体験キット
  5. マイクロプラスチックの諸問題
  6. 島津製作所がケムステVシンポに協賛しました
  7. 天然物の生合成に関わる様々な酵素
  8. 【2分クッキング】シキミ酸エスプレッソ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2014年化学10大ニュース
  2. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  3. 第三回 北原武教授ー化学と生物の融合、ものつくり
  4. 第94回日本化学会付設展示会ケムステキャンペーン!Part II
  5. エミリー・バルスカス Emily P. Balskus
  6. 鉄とヒ素から広がる夢の世界
  7. ホフマン・レフラー・フレイターク反応 Hofmann-Loffler-Freytag Reaction
  8. 四酸化ルテニウム Ruthenium Tetroxide (RuO4)
  9. 蛍光異方性 Fluorescence Anisotropy
  10. マニュエル・アルカラゾ Manuel Alcarazo

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年6月
« 5月   7月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

フラーレン〜ケージを拡張、時々、内包〜

トリアジン誘導体とN-フェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP