[スポンサーリンク]

化学者のつぶやき

ナイトレンの求電子性を利用して中員環ラクタムを合成する

[スポンサーリンク]

Rh触媒とアジド基から生じる反応活性種Rhナイトレンにより、分子内シクロブタン環開裂を伴う中員環ラクタム構築反応を見出した

金属ナイトレンを利用したN-ヘテロ環形成反応

N-ヘテロ環状化合物を簡便に合成する手法は、多くの化学者によって盛んに開発されている。イリノイ大学のDriver准教授らはアジド基と遷移金属触媒から生じる金属ナイトレンの求電子性を有効利用したN-ヘテロ環状化合物の合成法を報告している。

例えば、ロジウム触媒存在下、ビニルアジド1や、スチリルアジド2を用いた分子内C­–Hアミノ化反応1)(図1A, B)や、スチリルアジド3の環化転位反応2) (図1C)による置換インドール合成がある。

著者らは、次なるアイディアとして、ひずみのある環をもつフェニルアジド4から金属ナイトレンを発生させれば、環の開裂を伴って反応性の高いキノイド5が生じ、続く転位反応によってN-ヘテロ環化合物を合成できると考えた(図1D)。今回、そのアイディアに基づいた中員環ラクタムの合成に成功したため紹介する。

図1. 金属ナイトレンを利用したN-ヘテロ環形成反応

Rh2(II)-Catalyzed Ring Expansion of Cyclobutanol-Substituted Aryl Azides To Access Medium-Sized NHeterocycles
Mazumdar, W.; Jana, N.; Thurman, B. T.; Wink, D. J.; Driver, T. G. J. Am. Chem. Soc. 2017, 139, 5031.DOI: 10.1021/jacs.7b01833

論文著者の紹介

研究者:Tom G. Driver
研究者の経歴:
1999 B.S. Indiana University, USA (Prof. Lawrence K. Montgomery)
2004 Ph.D. University of California, USA (Prof. Keith A. Woerpel)
2004-2006 Posdoc, California Institute of Technology, USA (Prof. John E. Bercaw and Jay A. Labinger)
2006-2012 Assistant Professor, University of Illinois, USA
2012-current Associate Professor, University of Illinois, USA
研究内容:遷移金属触媒を用いたN-ヘテロ環状化合物の新規合成法の開発

論文の概要

Rh二核錯体存在下、オルト位にシクロアルカノールをもつフェニルアジド6からの環拡大反応による中員環ラクタム7の合成に成功した。

Ru、Ir触媒は低収率ではあるものの反応は進行するが、Co触媒は効果がない。Rh2(esp)2が最も効果的であり、わずか1 mol%の添加で7が良好な収率で得られる。芳香環上の置換基効果はなく、幅広い基質で適用できる。

また、シクロアルカノール部位については、3員環あるいは4員環を用いることが可能で、酸素原子を含む環や縮環構造をもつ環においても適用可能である。

注目すべき点は、本反応が化学選択的かつ立体特異的に進行するということである。例えば、アジド6bのシクロブタノール部位は、転位しうる反応点が二つあるが、ベンジル位の炭素(メチン炭素)が選択的に転位し単一の生成物7bを与える。また、シス置換されたアジド6cからは高ジアステレオ選択的に7cが得られる(図2A)。

推定反応機構を図2Bに示す。 (1)アジド6とRh2(esp)2から、Rhナイトレン8の形成、(2)8あるいは13からシクロアルカノールの環拡大によるキノイド9の生成、(3)9がプロトン転位し得られる10の芳香族化を伴うアシリウムイオン11の生成、(4)N原子の求核攻撃と、続く触媒の再生とヘテロ環7の形成、という機構である。

シクロペンタン環をもつアジド14を用いるとC–Hアミノ化が進行した15を与えることから、環ひずみが本反応に重要であることがわかる。また、ヒドロキシ基を保護した16a,bを用いると同様にC–Hアミノ化が進行することから、ヒドロキシ基が環拡大反応に重要であることが示唆される(図2C)。

図2. (A)反応基質調査 (B)推定反応機構 (C)シクロアルカノール部位の検討

以上、原料の合成に工程数がかかることが難点ではあるが、金属ナイトレンをうまく活用した新奇中員環合成法である。

参考文献

  1. (a) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. Am. Chem. Soc. 2007, 129, 7500. DOI: 10.1021/ja072219k (b) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem., Int. Ed. 2008, 47, 5056. DOI: 10.1002/anie.200800689
  2. Jones, C.; Nguyen, Q.; Driver, T. G. Chem., Int. Ed. 2014, 53, 785. DOI: 10.1002/anie.201308611

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 海洋天然物パラウアミンの全合成
  2. 第1回ACCELシンポジウムを聴講してきました
  3. 100 ns以下の超高速でスピン反転を起こす純有機発光材料の設計…
  4. 技術セミナー参加体験談(Web開催)
  5. 3回の分子内共役付加が導くブラシリカルジンの網羅的全合成
  6. “逆転の発想”で世界最高のプロトン伝導度を示す新物質を発見
  7. スルホンアミドからスルホンアミドを合成する
  8. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. CFDで移動現象論111例題 – Ansys Fluentによる計算解法 –
  2. ブラム・イッター アジリジン合成 Blum-Ittah Aziridine Synthesis
  3. 光学活性有機ホウ素化合物のカップリング反応
  4. 【速報】Mac OS X Lionにアップグレードしてみた
  5. ボールペンなどのグリップのはなし
  6. ご注文は海外大学院ですか?〜渡航編〜
  7. 抗体触媒 / Catalytic Antibody
  8. ゼムラー・ウォルフ反応 Semmeler-Wolff Reaction
  9. ロドデノール (rhododenol)
  10. 「炭素-炭素結合を切って組み替える合成」テキサス大学オースティン校・Dong研より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年5月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP