[スポンサーリンク]

化学者のつぶやき

磁力で生体触媒反応を制御する

今回は、先月創刊されたことで話題のNature Catalysisから論文を紹介します。テーマは、酵素の反応を磁場で遠隔コントロールするという内容で、磁性ナノ粒子をうまく化学修飾することで、生体触媒の反応性を制御しています。磁力や光、超音波など、物理的な力を使ったガン治療が近年注目されていますが、本手法は、物理的な力と酵素の反応をうまく組み合わせたおもしろい研究です。

“Magnetic field remotely controlled selective biocatalysis”

Zakharchenko, A.; Guz, N.; Laradji, A. M.; Katz, E.; Minko, S. Nature Catalysis 2017, 1, 73. DOI: 10.1038/s41929-017-0003-3

1. 磁性ナノ粒子によるドラッグデリバリー

図1. 磁気ナノ粒子を用いたドラッグデリバリーの例。

ガン治療においては、正常な細胞を傷つけず、ガン細胞だけをうまく攻撃する技術が重要です。最近特に注目されているのは、磁性ナノ粒子を用いた手法です。磁性粒子を用いれば、外部磁場によって粒子を特定の位置に集めたり、交流磁場によって標的の組織を加熱することができます。例えば、温度応答性分子でコーティングした磁性ナノ粒子を用いれば、外部から磁場をかけて標的の位置を加熱することで、生体内のpHや塩濃度変化に頼らず薬剤分子を放出することができます(図1)。しかしながら、このような方法では、高温で不安定なタンパクを用いることはできません

そこで、ジョージア大学のMinko教授らは、磁力で粒子同士がくっつくことを巧みに利用して生体触媒反応をコントロールし、薬剤を放出する手法を開発しました。

2. 磁場による酵素反応のコントロール

図2. ポリマーでコーティングされた磁性ナノ粒子。

彼らはまず、SiO2で被覆された磁性ナノ粒子をブロックポリマーでコーティングしました(図2)。内側のブロックはポリアクリル酸(PAA)で、酵素による加水分解反応に適した酸性環境を生み出します。外側は、側鎖にポリエチレングリコールメチルエーテルを持つポリマー(PPEGMA)で、酵素と基質が反応しないためのバリアとして働きます。さらに、彼らは酵素と基質をそれぞれ磁性ナノ粒子に担持しました(図2;酵素NP, 基質NP)。磁場のない状態では、これらの磁性ナノ粒子は分散しており、ポリマーに覆われた酵素と基質は反応しません。これらの粒子に磁場をかけると、粒子同士が磁力よって配列し、酵素と基質が近づくため、触媒反応が起こります。触媒反応によって薬剤分子が生み出されるように反応をデザインしておけば、磁場に応じた薬剤放出が可能になります。

3. 磁場による抗ガン剤の放出

彼らは、パパインというタンパク分解酵素とドキソルビシン(DOXという抗ガン剤を用いて薬剤放出を行いました。彼らの手法では、DOXはウシ血清アルブミン(BSA)と結合した状態で粒子に担持され、パパインによって切り出される仕組みになっています。

まず彼らは、粒子溶液を蛍光測定用セルに入れ、磁場をかけながらDOXの蛍光強度変化を調べました。すると、図3のように、磁場をかけてから0, 1, 24時間と時間が経つにつれ、蛍光強度が大きくなることが観察されました。これは、ポリマー構造内に遮蔽されていたDOXが粒子外に放出されたことを示唆しています。

図3. DOXの蛍光強度変化。1, 2, 3はそれぞれ磁場をかけてから0, 1, 24時間後。(論文より)

さらに彼らは、磁性ナノ粒子から放出されるDOXがガン細胞に与える効果を検証しました。図4aは、それぞれ「磁性粒子なし」「磁場なし」「磁性粒子・磁場あり」の条件で培養したマウス乳癌細胞(4T1細胞)の様子を示しています。「磁性粒子・磁場あり」の条件では、「磁性粒子なし」や「磁場なし」の条件と比べ、ガン細胞の増幅が抑えられています。また、「磁性粒子なし」の条件における細胞数を基準とし、細胞の生存率を算出すると、図4bのようになります。いずれの粒子濃度においても、「磁性粒子・磁場あり」の条件で、細胞数が格段と少なくなっていることが分かります。

図4. ガン細胞の増幅阻害(論文より)。(a) 培養後24時間の4T1細胞の様子。(b) 各DOX濃度での4T1細胞の生存率。水色:磁性粒子なし、灰色:磁場なし、赤:磁性粒子・磁場あり。

4. おわりに

今回の研究では、酵素と基質の相互作用を磁場とポリマーでうまく制御し、(i) 刺激に応じて酵素反応を起こせること、(ii) 酵素反応を遠隔操作できること、 (iii) 必要ないときに酵素反応が起こるのを抑えることが達成されています。今後、様々な薬剤分子の輸送に応用されることが期待できます。

参考文献

  • Torchilin, V. P. Nat. Rev. Drug Discov. 2014, 13, 813. DOI: 10.1038/nrd4333
  • Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Sakamoto, W.; Yogo, T.; Ishimura, K. Theranostics 2014, 4, 834.
 DOI: 10.7150/thno.9199

関連書籍

関連リンク

The following two tabs change content below.
kanako

kanako

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. 表裏二面性をもつ「ヤヌス型分子」の合成
  2. アメリカで Ph.D. を取る –結果発表ーッの巻–
  3. 製薬会社のテレビCMがステキです
  4. 多才な補酵素:PLP
  5. 有機合成化学総合講演会@静岡県立大
  6. 癸巳の年、世紀の大発見
  7. 2017年の注目分子はどれ?
  8. アメリカ大学院留学:実験TAと成績評価の裏側

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. [12]シクロパラフェニレン : [12]Cycloparaphenylene
  2. 今冬注目の有機化学書籍3本!
  3. Semiconductor Photocatalysis: Principles and Applications
  4. 人工タンパク質、合成に成功 北陸先端大、エイズ薬剤開発に道
  5. ミニスキ反応 Minisci Reaction
  6. 近況報告PartIV
  7. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part III
  8. ロイ・ペリアナ Roy A. Periana
  9. リチウムにビリリとしびれた芳香環
  10. カルボン酸だけを触媒的にエノラート化する

関連商品

注目情報

注目情報

最新記事

可視光で芳香環を立体選択的に壊す

キラルルイス酸光触媒を用いた不斉脱芳香族的付加環化反応が開発された。ヘテロ芳香環の芳香族性を壊しなが…

科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞

2018年7月18日、フランス大使公邸にて2018年度ロレアル-ユネスコ女性科学者 日本奨励賞の授賞…

クリストフ・レーダー Christoph Rader

クリストフ・レーダー(Christoph Rader、19xx年x月xx日-)は、米国の生化学者・分…

2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Protecting Group

概要2-(トリメチルシリル)エトキシカルボニル(2-(trimethylsilyl)ethoxy…

即戦力のコンパクトFTIR:IRSpirit

化合物の合成や構造決定に勤しんでいる読者の皆様。最近、島津製作所から新しいFTIR(フーリエ変換赤外…

1,3-ジエン類のcine置換型ヘテロアリールホウ素化反応

3-ブロモピリジン類と1,3-ジエン類を用いたcine置換型ヘテロアリールホウ素化反応が開発された。…

PAGE TOP