[スポンサーリンク]

化学者のつぶやき

磁力で生体触媒反応を制御する

[スポンサーリンク]

今回は、先月創刊されたことで話題のNature Catalysisから論文を紹介します。テーマは、酵素の反応を磁場で遠隔コントロールするという内容で、磁性ナノ粒子をうまく化学修飾することで、生体触媒の反応性を制御しています。磁力や光、超音波など、物理的な力を使ったガン治療が近年注目されていますが、本手法は、物理的な力と酵素の反応をうまく組み合わせたおもしろい研究です。

“Magnetic field remotely controlled selective biocatalysis”

Zakharchenko, A.; Guz, N.; Laradji, A. M.; Katz, E.; Minko, S. Nature Catalysis 2017, 1, 73. DOI: 10.1038/s41929-017-0003-3

1. 磁性ナノ粒子によるドラッグデリバリー

図1. 磁気ナノ粒子を用いたドラッグデリバリーの例。

ガン治療においては、正常な細胞を傷つけず、ガン細胞だけをうまく攻撃する技術が重要です。最近特に注目されているのは、磁性ナノ粒子を用いた手法です。磁性粒子を用いれば、外部磁場によって粒子を特定の位置に集めたり、交流磁場によって標的の組織を加熱することができます。例えば、温度応答性分子でコーティングした磁性ナノ粒子を用いれば、外部から磁場をかけて標的の位置を加熱することで、生体内のpHや塩濃度変化に頼らず薬剤分子を放出することができます(図1)。しかしながら、このような方法では、高温で不安定なタンパクを用いることはできません

そこで、ジョージア大学のMinko教授らは、磁力で粒子同士がくっつくことを巧みに利用して生体触媒反応をコントロールし、薬剤を放出する手法を開発しました。

2. 磁場による酵素反応のコントロール

図2. ポリマーでコーティングされた磁性ナノ粒子。

彼らはまず、SiO2で被覆された磁性ナノ粒子をブロックポリマーでコーティングしました(図2)。内側のブロックはポリアクリル酸(PAA)で、酵素による加水分解反応に適した酸性環境を生み出します。外側は、側鎖にポリエチレングリコールメチルエーテルを持つポリマー(PPEGMA)で、酵素と基質が反応しないためのバリアとして働きます。さらに、彼らは酵素と基質をそれぞれ磁性ナノ粒子に担持しました(図2;酵素NP, 基質NP)。磁場のない状態では、これらの磁性ナノ粒子は分散しており、ポリマーに覆われた酵素と基質は反応しません。これらの粒子に磁場をかけると、粒子同士が磁力よって配列し、酵素と基質が近づくため、触媒反応が起こります。触媒反応によって薬剤分子が生み出されるように反応をデザインしておけば、磁場に応じた薬剤放出が可能になります。

3. 磁場による抗ガン剤の放出

彼らは、パパインというタンパク分解酵素とドキソルビシン(DOXという抗ガン剤を用いて薬剤放出を行いました。彼らの手法では、DOXはウシ血清アルブミン(BSA)と結合した状態で粒子に担持され、パパインによって切り出される仕組みになっています。

まず彼らは、粒子溶液を蛍光測定用セルに入れ、磁場をかけながらDOXの蛍光強度変化を調べました。すると、図3のように、磁場をかけてから0, 1, 24時間と時間が経つにつれ、蛍光強度が大きくなることが観察されました。これは、ポリマー構造内に遮蔽されていたDOXが粒子外に放出されたことを示唆しています。

図3. DOXの蛍光強度変化。1, 2, 3はそれぞれ磁場をかけてから0, 1, 24時間後。(論文より)

さらに彼らは、磁性ナノ粒子から放出されるDOXがガン細胞に与える効果を検証しました。図4aは、それぞれ「磁性粒子なし」「磁場なし」「磁性粒子・磁場あり」の条件で培養したマウス乳癌細胞(4T1細胞)の様子を示しています。「磁性粒子・磁場あり」の条件では、「磁性粒子なし」や「磁場なし」の条件と比べ、ガン細胞の増幅が抑えられています。また、「磁性粒子なし」の条件における細胞数を基準とし、細胞の生存率を算出すると、図4bのようになります。いずれの粒子濃度においても、「磁性粒子・磁場あり」の条件で、細胞数が格段と少なくなっていることが分かります。

図4. ガン細胞の増幅阻害(論文より)。(a) 培養後24時間の4T1細胞の様子。(b) 各DOX濃度での4T1細胞の生存率。水色:磁性粒子なし、灰色:磁場なし、赤:磁性粒子・磁場あり。

4. おわりに

今回の研究では、酵素と基質の相互作用を磁場とポリマーでうまく制御し、(i) 刺激に応じて酵素反応を起こせること、(ii) 酵素反応を遠隔操作できること、 (iii) 必要ないときに酵素反応が起こるのを抑えることが達成されています。今後、様々な薬剤分子の輸送に応用されることが期待できます。

参考文献

  • Torchilin, V. P. Nat. Rev. Drug Discov. 2014, 13, 813. DOI: 10.1038/nrd4333
  • Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Sakamoto, W.; Yogo, T.; Ishimura, K. Theranostics 2014, 4, 834.
 DOI: 10.7150/thno.9199

関連書籍

関連リンク

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. タンパク質の定量法―ビシンコニン酸法 Protein Quant…
  2. コロナワクチン接種の体験談【化学者のつぶやき】
  3. 芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合…
  4. MOFはイオンのふるい~リチウム-硫黄電池への応用事例~
  5. 「サイエンスアワードエレクトロケミストリー賞」が気になったので調…
  6. 二量化の壁を超えろ!β-アミノアルコール合成
  7. 水素社会実現に向けた連続フロー合成法を新開発
  8. 文献管理のキラーアプリとなるか? 「ReadCube」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-
  2. 炭素-炭素結合を組み替えて多環式芳香族化合物を不斉合成する
  3. ケミカルバイオロジー chemical biology
  4. 第71回―「化学のリーディングジャーナルを編集する」Stephen Davey博士
  5. 大型リチウムイオン電池の基礎知識【終了】
  6. 天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる?
  7. 学生実験・いまむかし
  8. 光レドックス触媒と有機分子触媒の協同作用
  9. 和光純薬を富士フイルムが買収へ
  10. 第143回―「単分子エレクトロニクスと化学センサーの研究」Nongjian (NJ) Tao 教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年2月
 1234
567891011
12131415161718
19202122232425
262728  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP