[スポンサーリンク]

スポットライトリサーチ

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐち じゅんいち)博士にお願いしました。

谷口さんは、この3月に京都大学大学院で博士を取得されたばかりの若手研究者です。現在は理化学研究所生命機能科学研究センターのヒト器官形成研究チームで博士研究員をされています。

博士課程では京都大学大学院理学研究科杉山研究室において、主に核酸のケミカルバイオロジー研究に携われていました。

最近、タイトルにありますように特定の場所の遺伝子を活性化できる新しい分子を開発するという成果をあげられ、その内容はJACS誌に掲載・プレスリリースとして発表されています。

なお、本成果はJACS誌140巻のSupplementary Cover Artにも選ばれています。

Taniguchi, J.; Feng, Y.; Pandian, G.; Hashiya, F.; Hidaka, T.; Hashiya, K.; Park, S.; Bando, T.; Ito, S.; Sugiyama, H.

Biomimetic Artificial Epigenetic Code for Targeted Acetylation of Histones

J. Am. Chem. Soc., 2018, 140, 7108-7115. DOI: 10.1021/jacs.8b01518

最近博士を取られたばかりなのにすでにすごい成果をいくつも持っていらっしゃって、筆者も大きな刺激を受けました。

生物学の要素も多く含まれる内容ではありますが、ぜひインタビューとともに原著論文も御覧ください!

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?

狙ったヌクレオソームのヒストンアセチル化を誘導する分子「Bi-PIP」を開発しました。

ヒストンのリシンアセチル化は、遺伝子発現活性化やオープンクロマチンに関連する代表的なエピジェネティック修飾として知られ、ヒストンアセチル基転移酵素(HAT)によって導入されます。P300を含む多くのHATタンパク質はその分子内にアセチル化リシンを認識するブロモドメイン(BD)を有しており、この構造がヒストンアセチル化の維持や伝搬に関わっていると考えられています。すなわち、ブロモドメインが既存のアセチル化リシンに結合し、その近傍にHATが新規アセチル化を誘導するというものです。本研究では、P300のブロモドメインに結合する分子(ブロモドメイン阻害剤、Bi)と塩基配列特異的にDNAに結合する分子(ピロールイミダゾールポリアミド、PIP)をつなぎ合わせたコンジュゲート「Bi-PIP」を開発し、上述の「ブロモドメインを介したヒストンアセチル化の伝搬」を利用して標的DNA配列を含む領域のヒストンアセチル化を誘導することに成功しました。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

分子のデザインです。本来、ブロモドメイン阻害剤は、ブロモドメインのアセチル化リシン認識部位に入り込むことでアセチル化リシンの読み取りを阻害するものであり、一般的にヒストンアセチル化の抑制に寄与します。一方、本研究ではブロモドメイン阻害剤を特定のDNA配列領域にとどめておくことで、ブロモドメインを阻害するのではなく、アセチル化リシンの代わりにブロモドメインへ結合することでP300を呼び込みました。これによって、標的ヌクレオソームのヒストンアセチル化を促進するという、アセチル化抑制とは真逆の効果を得ました。

このような発想の転換は、研究を進めるうえで大事な要素であり、面白い部分だと考えています。

Q3. 研究テーマの難しかったところはどこですか?また、それをどのように乗り越えましたか?

Bi-PIPの作用をデモンストレートするところです。細胞内のエピジェネティック制御は複雑なため、細胞のクロマチンでBi-PIPを評価しても結果が複雑になってしまいプルーフオブコンセプトにはならないと考えました。そこで、再構成ヌクレオソームを用いたシンプルな系を構築することを目指しました。当時の研究室はヌクレオソーム再構成の経験が浅く、うまくいくか不安でしたが、幸運にもワークする実験系を立ち上げることに成功しました。最終的には、再構成ヌクレオソームを用いた免疫沈降と質量分析により、Bi-PIPによる配列選択的なヒストンアセチル化をきれいに示すことができました。

Q4. 将来は化学とどう関わっていきたいですか?

化学分野の強みのひとつとして、「思い描いた機能や特性を持つ分子を自由に設計し創造できる」というものがあると思っています。現在私は生物学の修行中で化学から少し離れていますが、いずれはまた化学の力を借りて、今までできなかったことを可能にするような分子を自由に創り出したいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

今回開発したBi-PIPがどんな場面で役に立つのかは、まだわかりません。エピゲノム治療薬や細胞リプログラミングツールなどいろいろな可能性があると思いますので、興味を持たれた方は研究室へご連絡いただけると大変うれしく思います。

本研究を行うにあたって数多くのご指導をいただきました杉山先生、Pandian先生に、この場をお借りして感謝申し上げます。また、実験指導・技術提供してくださった研究室の皆様、医学研究支援センターの伊藤先生、理学研究科の依光先生、野木先生に厚く御礼申し上げます。

研究者の略歴

名前:谷口 純一 (たにぐち・じゅんいち)

所属:国立研究開発法人理化学研究所 生命機能科学研究センター ヒト器官形成研究チーム 研究員

研究テーマ:ウォルフ管発生の機構解明および試験管内再構成

略歴:
2013年3月 京都大学理学部 卒業
2015年3月 京都大学大学院理学研究科化学専攻 修士課程修了
2015年4月―2018年3月 JSPS特別研究員(DC1)
2018年3月 京都大学大学院理学研究科化学専攻 博士後期課程修了、博士号(理学)取得
2018年4月より現職

関連記事

  1. カーボンナノリング合成に成功!
  2. 高い発光性を示すヘリセンの迅速的合成
  3. アルメニア初の化学系国際学会に行ってきた!③
  4. 「ELEMENT GIRLS 元素周期 ~聴いて萌えちゃう化学の…
  5. 論説フォーラム「グローバル社会をリードする化学者になろう!!」
  6. 有機アジド(3):アジド導入反応剤
  7. ビッグデータが一変させる化学研究の未来像
  8. 2010年人気記事ランキング

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. フッ素ドープ酸化スズ (FTO)
  2. フィッツナー・モファット酸化 Pfitzner-Moffatt Oxidation
  3. ボツリヌストキシン (botulinum toxin)
  4. ペンタシクロアナモキシ酸 pentacycloanamoxic acid
  5. 米ファイザー、コレステロール薬の開発中止
  6. ヨウ化サマリウム(II) Samarium(II) Iodide SmI2
  7. 米メルク、「バイオックス」回収で第2・四半期は減収減益
  8. ニック・ホロニアック Nicholas Holonyak, Jr.
  9. 二酸化セレン Selenium Dioxide
  10. ボリルヘック反応の開発

関連商品

注目情報

注目情報

最新記事

【大阪開催2月26日】 「化学系学生のための企業研究セミナー」

2020年卒業予定の学生の皆さんは、3月から就活本番を迎えますが、すでに企業の選考がスタートしている…

Nature 創刊150周年記念シンポジウム:ポスター発表 募集中!

本年、Nature 創刊150周年を迎えるそうです。150年といえば、明治時代が始まったばかり、北海…

アルケニルアミドに2つアリールを入れる

ニッケル触媒を用いたアルケニルアミドの1,2-ジアリール化反応が開発された。フマル酸エステルを配位子…

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか…

アメリカで医者にかかる

アメリカの大学院に進学する際、とても悩んだのが、医療保険についてです。アメリカでは医療費がとても高い…

MOF 結晶表面の敏感な応答をリアルタイム観察

第178回のスポットライトリサーチは、東京大学の細野暢彦講師にお願いしました。細野先生は高分…

Chem-Station Twitter

PAGE TOP