[スポンサーリンク]

化学者のつぶやき

CRISPRで薬剤分子-タンパク相互作用を解明する

[スポンサーリンク]

Harvard大学のLiau教授らは、ゲノム編集技術CRISPRを利用して、骨髄性白血病に関わるタンパク(ヒストン脱メチル化酵素:LSD1)への薬剤分子の作用機序を解明しました。

“CRISPR-suppressor scanning reveals a nonenzymatic role of LSD1 in AML”

Vinyard, M. E.; Su, C.; Siegenfeld, A. P.; Waterbury, A. L.; Freedy, A. M.; Gosavi, P. M.; Park, Y.; Kwan, E. E.; Senzer, B. D.; Doench, J. G.; Bauer, D. E.; Pinello, L.; Liau, B. B. Nat. Chem. Biol. 2019, 5, 529. (DOI: 10.1038/s41589-019-0263-0)

1. ゲノム編集技術CRISPR-Cas9

CRISPRは近年、科学界で最も注目されている技術です。従来、遺伝子を改変するには、放射線や化学物質でランダムに変異を加え、得られた個体の中から目的の変異を含む個体を選び出すという手法が一般的でした(図1a)。ところが、それではとても効率が悪く、目的の個体をなかなか得ることができません。そこで、DNAを特定の位置で切断したり、修復したりする酵素を利用して、遺伝子を思い通りに改変する技術の開発が進められました(図1b)。

図1. 遺伝子改変の手法。

1990年後半から、ジンクフィンガーヌクレアーゼ(ZFN)やテールヌクレアーゼ(TALEN)という酵素を用いた手法が開発され、ゲノム編集技術は大きく進展しました。ところが、ZFNやTALENには、酵素の作製が難しい・編集効率があまり高くないといった問題点がありました。そこで、2012年にエマニュエル・シャルパンティエ(Emmanuelle Charpentier)教授・ジェニファー・ダウドナ(Jennifer Doudna)教授らによって発表され、注目を浴びているのがCRISPR-Cas9です。[1] CRISPR-Cas9は、ZFNやTALENのようにタンパクを用いて目的のDNA配列を認識するのではなく、ガイドRNA(gRNA)と呼ばれるRNA分子によってDNA配列を認識します(図2)。RNA–DNAの相互作用(A, T/U, G, Cの塩基対形成)は、タンパク–DNAの相互作用よりも単純である上に、ZFNやTALENのように目的配列ごとにタンパクを作り直さなくても、認識用のgRNAのみを変えて切断用の酵素(Cas9)を使い回すことができるので、これまで以上に簡単にゲノム編集が行えるようになりました。

図2. 遺伝子編集技術、ZFNやTALEN(左)とCRISPR(右)の違い。

2. CRISPRを用いた創薬研究:CRISPR-Suppressor Scanning

さて、CRISPRは、遺伝子治療や農作物の品種改良、医学・生物学の研究などにおいて、特定の遺伝子を挿入したり、取り除いたりするために用いられています。でも、CRISPRの応用先はそれだけではありません。CRISPRは、低分子医薬の創薬研究においてもとても有用です。

今回紹介する論文でLiau教授らは、CRISPR-suppressor scanning(CRISPR-抑制分子スキャニング)と呼ばれる手法を用いて、がん細胞の増殖に関わるタンパクに対し低分子阻害剤が作用するメカニズムを解明しました。CRISPR scanningでは、まず図3のようにCRISPRのDNA切断機能を利用して、標的タンパクの変異体ライブラリを作ります。CRISPRによって変異が起こる仕組みは以下の通りです。

  • 様々な配列を持つガイドRNAライブラリを利用し、標的タンパクの遺伝子を持つ二本鎖DNAを切断。
  • 切断された二本鎖DNAが、細胞が元々持っているDNAの修復機構(非相同末端結合;NHEJ)によって自然に繋ぎ合わされる。
  • 修復時のエラーによって、様々な変異の入ったDNAが得られる。

図3. CRISPR を用いた標的タンパクの変異体ライブラリの作製。

次に、このようにして得られた細胞を、阻害剤(リガンド分子)の存在下で培養します。すると、ある変異体では、リガンド分子が結合するはずだった部位に変異が入り、リガンド分子が標的タンパクに作用しなくなります(薬剤耐性変異)。今回の論文では、標的タンパクはがん細胞の増殖に関わるタンパク(LSD1)で、リガンド分子はLSD1の働きを阻害する、つまりがん細胞の増殖を抑える作用を持っているため、最終的に生き残った細胞のDNA配列からリガンド分子の作用機序を解析することができます(図4)。

図4. CRISPR scanningの流れ。

3. 複数の機能を持つタンパク(LSD1)へのリガンド分子の作用機序の解析

CRISPR scanningによるタンパク-リガンド相互作用の解析は、タンパクが複数の機能を持っている場合にとても有効です。今回用いられた標的タンパクLSD1は、図5のように複数のドメインからなり、ヒストンを脱メチル化する酵素活性と、転写抑制因子GFI1/GFI1BのSNAGドメインに結合し、遺伝子発現を調節するという、2つの機能を持っています。

図5. 複数のドメインからなるLSD1の構造。脱メチル化活性(水色)とGFI1との結合(マゼンタ)の2つの機能を持つ。(PDB:2Y48)

薬を開発する際には、薬剤分子の結合がタンパクの機能にどう影響を与え、治療効果をもたらすのかを理解することが重要ですが、複雑なタンパクの場合はリガンドの結合によって複数の機能が同時に変化することがあるため、薬が効くメカニズムを知るのが困難です。ところが、CRISPR scanningを用いると、たくさんの変異体の情報が得られるため、リガンドの作用を詳しく解析することができます。図6aは、CRISPR scanningによって検出されたLSD1タンパクの変異の位置を示しています。データは以下のように読み取ることができます(図6b)。

  • タンパクの細胞増殖に関わる機能が損なわれる変異は、致死変異体となり除かれる。(フレームシフト変異も含む)
  • 変異がタンパクの細胞増殖に関する機能を完全に損なわず、リガンドの結合にも影響を与えない場合、その変異体は阻害剤非存在下でのみ増殖する。
  • 変異がリガンドの結合には影響を与えるが、タンパクの細胞増殖に関する機能には影響を与えない場合、その変異体は阻害剤の存在下・非存在下に関わらず増殖できる。(薬剤耐性変異)

図6. (a) CRISPR scanningによって検出された変異の位置。変異の検出度は、阻害剤なしで培養したサンプルのデータを元に規格化し、対数値を示している。(論文より)(b) 変異の位置とがん細胞の増殖。赤星:変異の位置、青四角:細胞増殖に重要な機能部位、緑四角:細胞増殖に不要な機能部位。結合ポケットは阻害剤の結合部位を示す。

興味深いことに、検出度の高かった変異のほとんどは、GFI1/ GFI1Bの結合部位(SNAG peptide)から少し離れ、脱メチル化活性部位(FAD補因子)の周辺に位置しています(図7;赤)。このことから、リガンド分子の作用機序は、脱メチル化活性を阻害することではなく、GFI1/ GFI1Bとの結合を阻害することであると示唆されます。実際、論文中では、CRISPR scanningによって得られた薬剤耐性LSD1が、脱メチル化活性を持たないこと・GFI1Bと相互作用できることなどが示されています。

LSD1の構造の拡大図。変異の検出度が高かった部位(赤)と低かった部位(青)。(論文より)

4. おわりに

今回の論文では、CRISPRを利用した遺伝子変異によって、標的タンパクの薬剤耐性変異体を体系的に生み出し、薬剤分子の作用機序を解析するCRISPR-Suppressor Scanningという手法が示されました。タンパクは複雑な分子で、結晶構造などの情報を元に狙い通りに薬剤耐性変異体をデザインすることは難しいため、この手法は創薬研究においてとても有用です。今後、他のタンパクにも広く応用されることが期待されます。

参考文献

  1. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. Science 2012, 337, 816. DOI: 10.1126/science.1225829
  2. Donovan, K. F.; Hegde, M.; Sullender, M.; Vaimberg, E. W.; Johannessen, C. M.; Root, D. E.; Doench, J. G. PLoS One. 2017, 12, e0170445. DOI: 10.1371/journal.pone.0170445

関連リンク

関連書籍

[amazonjs asin=”4023316881″ locale=”JP” title=”ゲノム編集からはじまる新世界 超先端バイオ技術がヒトとビジネスを変える”] [amazonjs asin=”4785358661″ locale=”JP” title=”ゲノム編集入門: ZFN・TALEN・CRISPR-Cas9″]
Avatar photo

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系
  2. 3Mとはどんな会社?
  3. ポリ塩化ビニルがセンター試験に出題されたので
  4. 有機レドックスフロー電池 (ORFB)の新展開:オリゴマー活物質…
  5. 元素紀行
  6. ドラマチック有機合成化学: 感動の瞬間100
  7. ドライアイスに御用心
  8. 化学系学生のための企業合同説明会

注目情報

ピックアップ記事

  1. trans-2-[3-(4-tert-ブチルフェニル)-2-メチル-2-プロペニリデン]マロノニトリル : trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile
  2. 勃起の化学
  3. 【十全化学】新卒採用情報
  4. 外国人研究者あるある
  5. カーボンナノチューブ量産技術を国際会議で発表へ
  6. 【21卒イベント】「化学系学生のための企業研究セミナー」 大阪1/17(金)・東京1/19(日)
  7. 投票!2015年ノーベル化学賞は誰の手に??
  8. 光触媒反応用途の青色LED光源を比較してみた【2020/8/11更新】
  9. 分子構造をモチーフにしたアクセサリーを買ってみた
  10. 有機合成化学協会誌2024年2月号:タンデムボラFriedel-Crafts反応・炭素-フッ素結合活性化・セリウム錯体・コバルト-炭素結合・ホスホロアミダイト法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP