[スポンサーリンク]

化学者のつぶやき

DNAを切らずにゲノム編集-一塩基変換法の開発

ゲノム編集といえば、今流行りのCRISPR/Cas9を思い浮かべる方が多いと思います。CRISPR/Cas9に限らず、ゲノム編集の基本的な戦略は、DNAを切り、そこに目的の遺伝子を導入するという方法をとります。しかし、DNAの切断を経る方法だと、非特異的な遺伝子導入や遺伝子欠損を防ぎきれません。

David LiuらのグループはDNAを切断せずにゲノム編集を行う方法を報告しました[1]。どうやってゲノム編集を行うかというと、シトシン(C)からウラシル(U)に変換する酵素をもちいる、いわゆる官能基変換反応を利用して達成しています!これを用いれば一塩基だけですがゲノム編集できます。

一塩基変換法の作用機序

彼らは通常、DNAを切る「ハサミ」として用いられるCas9を不活性し(dCas9)、それをゲノム編集する目的の配列認識に用いています。

具体的な分子設計としては、dCas9タンパク質にCytidine deaminaseというシトシン(C)をウラシル(U)に変換する酵素を結合させています。まずdCas9のガイドRNA(sgRNA)がターゲットの配列を認識すると二本鎖が解け、そこにCytidine deaminaseが作用することでシトシンがウラシルに変換します。生成したミスマッチ配列は、修復機構により対応する配列に変換され、C→U(T)という一塩基変換が達成されます。理屈としては非常に簡単で、近接効果を用いて選択的にdeaminaseを作用させ、その後生物本来の修復機構を利用すると言うことですね。

ちなみに同様の戦略が神戸大学の近藤らによっても報告されています[2]。Target-AIDと呼ばれるこの技術を用いて、最近ではベンチャー企業「バイオパレット」を立ち上げています。

一塩基変換法の作用機序(Ref 1より改変)

修復機構を工夫!

彼らの仕事はC→Uに変換しておわり!というわけではありません。そのあとの修復機構が効率的に進行する工夫もなされています。せっかく変異を入れたウラシルを、グリコシラーゼによって分解されるのを防ぐため、uracil DNA glycosylase inhibitor (UGI)をdCas9に導入しています。

また、修復機構を効率的に進行させるために、dCas9の変異を一つnativeのものに戻してニッカーゼ(DNAの一本鎖を切断)機能を回復させています。結局DNA切ってるんじゃん!と思われる方もいらっしゃると思いますが、本質的には、修復機構を効率的にするためであって、ゲノム変異を入れるためではないので。

修復機構も巧みにコントロールしている

Liuらは最近、これをin vivoでも達成しています[3]in vivoで用いる時は、より特異性を上げるためにdCas9に変異をいれたり(下図のHF-BE3)、生体に導入するための検討を行ったりしています。詳細は是非論文をご一読していただければと思います。

一塩基変換法に用いる酵素の全貌。Cas9 nickaseにCytidine deaminaseとUGIがconjugateされています。いろいろ工夫されています(出典: ref 3 )

おわりに

今回の方法だと一塩基しか変異入れれない!と思う方も多いと思います。ただ、多くの遺伝子病は一塩基変換するだけで十分なことも多く、また「バイオパレット」がおそらく狙っているであろう、遺伝子改変した農作物も一塩基変換で十分にその効果を発揮できるのでしょう。もちろん多くの変異を入れたいのならCRISPR/Cas9を用いればよく、適材適所というところでしょうかね。

今回はこの辺で。

 

参考文献

  1. Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R. Nature, 2016, 533, 420. DOI: 10.1038/nature17946
  2. Nishida, K.; Arazoe, T.; Yachie, N.; Banno, S.; Kakimoto, M.; Tabata, M.; Mochizuki, M.; Miyabe, A.; Araki, M.; Hara, K. Y.; Shimatani, Z.; Kondo, A. Science, 2016, 353, aaf8729. DOI: 10.1126/science.aaf8729
  3. Rees, H. A.; Komor, A. C.; Yeh, W.-H. H.; Caetano-Lopes, J.; Warman, M.; Edge, A. S. B.; Liu, D. R. Nat. Commun. 2017, 8, 15790. DOI: 10.1038/ncomms15790

関連リンク

The following two tabs change content below.
goatfish

goatfish

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. B≡B Triple Bond
  2. “腕に覚えあり”の若手諸君、「大津会議」…
  3. 高い発光性を示すヘリセンの迅速的合成
  4. 若手化学者に朗報!YMC研究奨励金に応募しよう!
  5. アルキルラジカルをトリフルオロメチル化する銅錯体
  6. 位置選択的C-H酸化による1,3-ジオールの合成
  7. ノーベル化学賞メダルと科学者の仕事
  8. PL法 ? ものづくりの担い手として知っておきたい法律

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ネイチャー論文で絶対立体配置の”誤審”
  2. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroamination
  3. 2007年度ノーベル化学賞を予想!(4)
  4. ブラッド・ペンテルート Bradley L. Pentelute
  5. カーボンナノチューブをふりかえる〜Nano Hypeの狭間で
  6. N,N,N’,N’-テトラメチルエチレンジアミン:N,N,N’,N’-Tetramethylethylenediamine
  7. 文具に凝るといふことを化学者もしてみむとてするなり⑧:ネオジム磁石の巻
  8. 野崎・檜山・岸カップリング反応 Nozaki-Hiyama-Kishi (NHK) Coupling
  9. ジャン=ピエール・ソヴァージュ Jean-Pierre Sauvage
  10. 低分子ゲル化剤・増粘剤の活用と材料設計、応用技術

関連商品

注目情報

注目情報

最新記事

カーボンナノベルト合成初成功の舞台裏 (1)

今年もあともう少しですね。私は中国の大学院で研究を行っている日本人です。このChem-Sta…

有機合成化学の豆知識botを作ってみた

皆さんこんにちは。めっきり実験から退き、教育係+マネジメント係になってしまったcosineです。…

デニス・ドーハティ Dennis A. Dougherty

デニス・A・ドーハティ(Dennis A. Dougherty、1952年12月4日-)は、米国の物…

ベンゼンの直接アルキル化

ベンゼンにアルキル基を導入したいとき、皆さんはどのような手法を用いますか? (さらに&hel…

アメリカ大学院留学:TAの仕事

私がこれまでの留学生活で経験した一番の挫折は、ティーチングアシスタント(TA)です。慣れない英語で大…

2017年の注目分子はどれ?

今年も残りあとわずかとなり、毎年おなじみのアメリカ化学会(ACS)によるMolecules of t…

Chem-Station Twitter

PAGE TOP