[スポンサーリンク]

化学者のつぶやき

DNAを切らずにゲノム編集-一塩基変換法の開発

[スポンサーリンク]

ゲノム編集といえば、今流行りのCRISPR/Cas9を思い浮かべる方が多いと思います。CRISPR/Cas9に限らず、ゲノム編集の基本的な戦略は、DNAを切り、そこに目的の遺伝子を導入するという方法をとります。しかし、DNAの切断を経る方法だと、非特異的な遺伝子導入や遺伝子欠損を防ぎきれません。

David LiuらのグループはDNAを切断せずにゲノム編集を行う方法を報告しました[1]。どうやってゲノム編集を行うかというと、シトシン(C)からウラシル(U)に変換する酵素をもちいる、いわゆる官能基変換反応を利用して達成しています!これを用いれば一塩基だけですがゲノム編集できます。

一塩基変換法の作用機序

彼らは通常、DNAを切る「ハサミ」として用いられるCas9を不活性し(dCas9)、それをゲノム編集する目的の配列認識に用いています。

具体的な分子設計としては、dCas9タンパク質にCytidine deaminaseというシトシン(C)をウラシル(U)に変換する酵素を結合させています。まずdCas9のガイドRNA(sgRNA)がターゲットの配列を認識すると二本鎖が解け、そこにCytidine deaminaseが作用することでシトシンがウラシルに変換します。生成したミスマッチ配列は、修復機構により対応する配列に変換され、C→U(T)という一塩基変換が達成されます。理屈としては非常に簡単で、近接効果を用いて選択的にdeaminaseを作用させ、その後生物本来の修復機構を利用すると言うことですね。

ちなみに同様の戦略が神戸大学の近藤らによっても報告されています[2]。Target-AIDと呼ばれるこの技術を用いて、最近ではベンチャー企業「バイオパレット」を立ち上げています。

一塩基変換法の作用機序(Ref 1より改変)

修復機構を工夫!

彼らの仕事はC→Uに変換しておわり!というわけではありません。そのあとの修復機構が効率的に進行する工夫もなされています。せっかく変異を入れたウラシルを、グリコシラーゼによって分解されるのを防ぐため、uracil DNA glycosylase inhibitor (UGI)をdCas9に導入しています。

また、修復機構を効率的に進行させるために、dCas9の変異を一つnativeのものに戻してニッカーゼ(DNAの一本鎖を切断)機能を回復させています。結局DNA切ってるんじゃん!と思われる方もいらっしゃると思いますが、本質的には、修復機構を効率的にするためであって、ゲノム変異を入れるためではないので。

修復機構も巧みにコントロールしている

Liuらは最近、これをin vivoでも達成しています[3]in vivoで用いる時は、より特異性を上げるためにdCas9に変異をいれたり(下図のHF-BE3)、生体に導入するための検討を行ったりしています。詳細は是非論文をご一読していただければと思います。

一塩基変換法に用いる酵素の全貌。Cas9 nickaseにCytidine deaminaseとUGIがconjugateされています。いろいろ工夫されています(出典: ref 3 )

おわりに

今回の方法だと一塩基しか変異入れれない!と思う方も多いと思います。ただ、多くの遺伝子病は一塩基変換するだけで十分なことも多く、また「バイオパレット」がおそらく狙っているであろう、遺伝子改変した農作物も一塩基変換で十分にその効果を発揮できるのでしょう。もちろん多くの変異を入れたいのならCRISPR/Cas9を用いればよく、適材適所というところでしょうかね。

今回はこの辺で。

 

参考文献

  1. Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R. Nature, 2016, 533, 420. DOI: 10.1038/nature17946
  2. Nishida, K.; Arazoe, T.; Yachie, N.; Banno, S.; Kakimoto, M.; Tabata, M.; Mochizuki, M.; Miyabe, A.; Araki, M.; Hara, K. Y.; Shimatani, Z.; Kondo, A. Science, 2016, 353, aaf8729. DOI: 10.1126/science.aaf8729
  3. Rees, H. A.; Komor, A. C.; Yeh, W.-H. H.; Caetano-Lopes, J.; Warman, M.; Edge, A. S. B.; Liu, D. R. Nat. Commun. 2017, 8, 15790. DOI: 10.1038/ncomms15790

関連リンク

The following two tabs change content below.
goatfish

goatfish

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. 炭素をつなげる王道反応:アルドール反応 (5/最終回)
  2. ニッケル触媒による縮合三環式化合物の迅速不斉合成
  3. 有機合成化学協会誌2018年12月号:シアリダーゼ・Brook転…
  4. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  5. 続・名刺を作ろう―ブロガー向け格安サービス活用のススメ
  6. アメリカ化学留学 ”立志編 ーアメリカに行く前に用意…
  7. ハイフン(-)の使い方
  8. iPhone/iPodTouchで使える化学アプリケーション 【…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ドライアイスに御用心
  2. 第5回慶應有機化学若手シンポジウム
  3. 野依不斉水素移動反応 Noyori Asymmetric Transfer Hydrogenation
  4. ゾムレ・ハウザー転位 Sommelet-Hauser Rearrangement
  5. グレーサー反応 Glaser Reaction
  6. 日本化学会第86春季年会(2006)
  7. ウォルフ・キシュナー還元 Wolff-Kishner Reduction
  8. 「マイクロリアクター」装置化に成功
  9. Dead Endを回避せよ!「全合成・極限からの一手」④
  10. Dead Endを回避せよ!「全合成・極限からの一手」①

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

Chem-Station Twitter

PAGE TOP