[スポンサーリンク]

化学者のつぶやき

光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす

[スポンサーリンク]

可視光光触媒を用いたスピロ環骨格構築法が報告された。創薬分野においてsp3炭素豊富な骨格は、構造、活性共に魅力的であり、注目が集まる。

N–ヘテロスピロ環と骨格構築法

リード化合物における芳香環数の増加は溶解性や生体利用率、薬物動態の低下を招き、医薬品開発の失敗率を高めうることが近年の研究から示唆されている(1)。したがって豊富にsp3炭素をもつ化合物ライブラリーは、より良い物理的・生物学的性質をもつリード化合物の発見につながると期待される。一方、フラグメントベースドドラッグディスカバリーにおいて、配座が固定された骨格は標的分子に対して高い親和性を示すことが多い。そのため、配座固定しながらsp3炭素を導入できるスピロ環骨格は、医薬品やリード化合物において頻出構造になりつつある(2)。しかし、これまでのヘテロスピロ環の合成は多段階のアルキル化・アシル化を必要としていた(3)。最近ではYouらによる脱芳香族的スピロ環構築(図1A)(4)や、Bodeらが開発したSnAP戦略を用いたスピロ環合成(図1B)(5)などが報告されているものの、N-ヘテロスピロ環骨格構築法(6)は依然として注目を集めている。

ケンブリッジ大学のGaunt教授らは以前、光触媒を用いた三成分連結型三級アミン構築法を報告した(図1C)(7)。本手法ではイミニウムの一電子還元により生じたα–アミノラジカルが、電子不足オレフィンもしくはジアリールオレフィンに付加することで三級アミンを与える。今回著書らはこの手法を応用し、分子内の種々のオレフィンに対するラジカル環化を利用したスピロ環構築法の開発に成功した(図1D)。本反応では容易に入手可能な原料から多様なN-ヘテロスピロ環が合成できる。

図1. (A)(B) これまでのN-ヘテロスピロ環構築法 (C) 著者が最近報告した文献 (D) 今回の反応

 

Streamlined Synthesis of C(sp3)-Rich N-Heterospirocycles Enabled by Visible-Light Mediated Photocatalysis
Flodén, N. J.; Trowbridge, A.; Willcox, D.; Walton, S. M.; Kim, Y.; Gaunt, M. J. J. Am. Chem. Soc. 2019, 141, 8426.
DOI: 10.1021/jacs.9b03372

論文著者の紹介

研究者:Matthew J. Gaunt
研究者の経歴:
-1995 B.A.(First Class Honours), University of Birmingham, UK
-1999 Ph.D, University of Cambridge, UK (Prof. Jonathan B. Spencer)
1999-2001 Postdoc,University of Pennsylvania, PA, USA (Prof. Amos B. Smith)
2001-2003 Junior Research Fellow, Magdalene College, UK (Prof. Steven V. Ley)
2003- Royal Society University Research Fellow, University of Cambridge
2006- Lecturer, University of Cambridge
2010- Reader, University of Cambridge
2012- Professor, University of Cambridge
研究内容:超原子価ヨウ素を用いた触媒的方法論の開発、C–H活性化反応の開発、天然物の全合成

論文の概要

アルケンを有する二級アミンとケトンに対しイリジウム光触媒とHantzsch ester、1,4-シクロヘキサジエン、酸触媒存在下光照射することで、スピロ炭素をもつピロリジンを与える(図2A)。本反応のカルボニル化合物には、ケトン及びアルデヒドが利用可能であり、環状ケトンを用いた際はスピロ環骨格を、アルデヒドを用いた際はピロリジン骨格を与える(47)。また、窒素原子上に様々な置換基をもつホモアリルアミンにも適用可能である(810)。電子不足アルケンを用いても本反応は進行し(1112)、4-ペンテニルアミンを用いた場合にはピペリジン骨格を与える(13)。さらに従来のC–N結合形成反応では合成困難な、二つのスピロ炭素をもつピロリジンも合成できる(14)。ホモプロパルギルアミンに適用した場合には、さらなる官能基修飾が可能である、エキソメチレンをもつスピロ環を与える(図2B)。
種々の実験結果から、以下の反応機構が提唱されている(図2C)。光照射によって励起されたイリジウム触媒とイミニウムとの間でSETが起こり、生じたα-アミノラジカルの5-exo trig環化によりピロリジン骨格を形成する。その後メチルラジカルが水素原子で捕捉され目的物を与える。イリジウム(IV)はHantzsch esterにより還元され光触媒サイクルが完結する。また、消光実験の結果から、励起されたイリジウムはHantzsch esterよりも優先的にイミニウムとのSETを起こすことが示唆された。

図2. (A)(B) 基質適用範囲 (C) 推定反応機構

以上、光触媒を用いた、窒素原子を有するスピロ環構築法が開発された。今後、さらなる基質一般性の拡大、および医薬品やリード化合物への応用に期待したい。

参考文献

  1. (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem.2009, 52, 6752−6756. DOI: 10.1021/jm901241e(b) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Nat. Chem. 2018, 10, 383−394. DOI: 10.1038/s41557-018-0021-z
  2. (a) Zheng, Y.-J.; Tice, C. M.; Singh, S. B. Bioorg, Med. Chem. Lett.2014,24, 3673−3682. DOI: 10.1016/j.bmcl.2014.06.081(b) Zheng, Y.-J.; Tice, C. M. Expert Opin. Drug Discovery2016, 11, 831−834. DOI: 10.1080/17460441.2016.1195367
  3. (a) Carreira, E. M.; Fessard, C. T. Chem. Rev. 2014, 114, 8257−8322. DOI: 10.1021/cr500127b(b) Rios, R. Chem. Soc. Rev. 2012, 41, 1060−1074. DOI: 10.1039/c1cs15156h
  4. Zhu, M.; Zheng, C.; Zhang, X.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 2636−2644. DOI: 10.1021/jacs.8b12965
  5. Siau, W.-Y.; Bode, J. W. J. Am. Chem. Soc.2014, 136, 17726−17729. DOI: 10.1021/ja511232b
  6. 他にもYe, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T. Nat. Chem.2018, 10, 1037−1041. DOI: 10.1038/s41557-018-0085-9が知られる。なお、本論文報告直後、Bodeらによるolefin amine reagentを用いたN-ヘテロスピロ環構築法が報告されている。(Wang, Y.-Y.; Bode, J.w. J. Am. Chem. Soc. 2019,141, 9739−9745. DOI: 10.1021/jacs.9b05074)
  7. Trowbridge, A.; Reich, D.; Gaunt, M. J. Nature 2018, 561, 522− DOI: 10.1038/s41586-018-0537-9
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. イナミドを縮合剤とする新規アミド形成法
  2. ルーブ・ゴールドバーグ反応 その2
  3. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・…
  4. 激レア!?アジドを含む医薬品 〜世界初の抗HIV薬を中心に〜
  5. カスケード反応で難関天然物をまとめて攻略!
  6. 第93回日本化学会付設展示会ケムステキャンペーン!Part I
  7. ナノの世界に朗報?!-コラニュレンのkg合成-
  8. 同位体効果の解釈にはご注意を!

注目情報

ピックアップ記事

  1. 第7回ImPACT記者懇親会が開催
  2. バリー・シャープレス Karl Barry Sharpless
  3. ゲルマニウム触媒でアルキンからベンゼンをつくる
  4. プラスチック類の選別のはなし
  5. ランタノイド Lanthanoid
  6. 有機EL organic electroluminescence
  7. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える
  8. “見た目はそっくり、中身は違う”C-グリコシド型擬糖鎖/複合糖質を開発
  9. ⽔を嫌う CH₃-基が⽔をトラップする︖⽣体浸透圧調整物質 TMAO の機能溶液化学を、分⼦間相互作⽤の時空間精細解析で解明
  10. 広範な反応性代謝物を検出する蛍光トラッピング剤 〜毒性の黒幕を捕まえろ〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP