[スポンサーリンク]

化学者のつぶやき

光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす

[スポンサーリンク]

可視光光触媒を用いたスピロ環骨格構築法が報告された。創薬分野においてsp3炭素豊富な骨格は、構造、活性共に魅力的であり、注目が集まる。

N–ヘテロスピロ環と骨格構築法

リード化合物における芳香環数の増加は溶解性や生体利用率、薬物動態の低下を招き、医薬品開発の失敗率を高めうることが近年の研究から示唆されている(1)。したがって豊富にsp3炭素をもつ化合物ライブラリーは、より良い物理的・生物学的性質をもつリード化合物の発見につながると期待される。一方、フラグメントベースドドラッグディスカバリーにおいて、配座が固定された骨格は標的分子に対して高い親和性を示すことが多い。そのため、配座固定しながらsp3炭素を導入できるスピロ環骨格は、医薬品やリード化合物において頻出構造になりつつある(2)。しかし、これまでのヘテロスピロ環の合成は多段階のアルキル化・アシル化を必要としていた(3)。最近ではYouらによる脱芳香族的スピロ環構築(図1A)(4)や、Bodeらが開発したSnAP戦略を用いたスピロ環合成(図1B)(5)などが報告されているものの、N-ヘテロスピロ環骨格構築法(6)は依然として注目を集めている。

ケンブリッジ大学のGaunt教授らは以前、光触媒を用いた三成分連結型三級アミン構築法を報告した(図1C)(7)。本手法ではイミニウムの一電子還元により生じたα–アミノラジカルが、電子不足オレフィンもしくはジアリールオレフィンに付加することで三級アミンを与える。今回著書らはこの手法を応用し、分子内の種々のオレフィンに対するラジカル環化を利用したスピロ環構築法の開発に成功した(図1D)。本反応では容易に入手可能な原料から多様なN-ヘテロスピロ環が合成できる。

図1. (A)(B) これまでのN-ヘテロスピロ環構築法 (C) 著者が最近報告した文献 (D) 今回の反応

 

Streamlined Synthesis of C(sp3)-Rich N-Heterospirocycles Enabled by Visible-Light Mediated Photocatalysis
Flodén, N. J.; Trowbridge, A.; Willcox, D.; Walton, S. M.; Kim, Y.; Gaunt, M. J. J. Am. Chem. Soc. 2019, 141, 8426.
DOI: 10.1021/jacs.9b03372

論文著者の紹介

研究者:Matthew J. Gaunt
研究者の経歴:
-1995 B.A.(First Class Honours), University of Birmingham, UK
-1999 Ph.D, University of Cambridge, UK (Prof. Jonathan B. Spencer)
1999-2001 Postdoc,University of Pennsylvania, PA, USA (Prof. Amos B. Smith)
2001-2003 Junior Research Fellow, Magdalene College, UK (Prof. Steven V. Ley)
2003- Royal Society University Research Fellow, University of Cambridge
2006- Lecturer, University of Cambridge
2010- Reader, University of Cambridge
2012- Professor, University of Cambridge
研究内容:超原子価ヨウ素を用いた触媒的方法論の開発、C–H活性化反応の開発、天然物の全合成

論文の概要

アルケンを有する二級アミンとケトンに対しイリジウム光触媒とHantzsch ester、1,4-シクロヘキサジエン、酸触媒存在下光照射することで、スピロ炭素をもつピロリジンを与える(図2A)。本反応のカルボニル化合物には、ケトン及びアルデヒドが利用可能であり、環状ケトンを用いた際はスピロ環骨格を、アルデヒドを用いた際はピロリジン骨格を与える(47)。また、窒素原子上に様々な置換基をもつホモアリルアミンにも適用可能である(810)。電子不足アルケンを用いても本反応は進行し(1112)、4-ペンテニルアミンを用いた場合にはピペリジン骨格を与える(13)。さらに従来のC–N結合形成反応では合成困難な、二つのスピロ炭素をもつピロリジンも合成できる(14)。ホモプロパルギルアミンに適用した場合には、さらなる官能基修飾が可能である、エキソメチレンをもつスピロ環を与える(図2B)。
種々の実験結果から、以下の反応機構が提唱されている(図2C)。光照射によって励起されたイリジウム触媒とイミニウムとの間でSETが起こり、生じたα-アミノラジカルの5-exo trig環化によりピロリジン骨格を形成する。その後メチルラジカルが水素原子で捕捉され目的物を与える。イリジウム(IV)はHantzsch esterにより還元され光触媒サイクルが完結する。また、消光実験の結果から、励起されたイリジウムはHantzsch esterよりも優先的にイミニウムとのSETを起こすことが示唆された。

図2. (A)(B) 基質適用範囲 (C) 推定反応機構

以上、光触媒を用いた、窒素原子を有するスピロ環構築法が開発された。今後、さらなる基質一般性の拡大、および医薬品やリード化合物への応用に期待したい。

参考文献

  1. (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem.2009, 52, 6752−6756. DOI: 10.1021/jm901241e(b) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Nat. Chem. 2018, 10, 383−394. DOI: 10.1038/s41557-018-0021-z
  2. (a) Zheng, Y.-J.; Tice, C. M.; Singh, S. B. Bioorg, Med. Chem. Lett.2014,24, 3673−3682. DOI: 10.1016/j.bmcl.2014.06.081(b) Zheng, Y.-J.; Tice, C. M. Expert Opin. Drug Discovery2016, 11, 831−834. DOI: 10.1080/17460441.2016.1195367
  3. (a) Carreira, E. M.; Fessard, C. T. Chem. Rev. 2014, 114, 8257−8322. DOI: 10.1021/cr500127b(b) Rios, R. Chem. Soc. Rev. 2012, 41, 1060−1074. DOI: 10.1039/c1cs15156h
  4. Zhu, M.; Zheng, C.; Zhang, X.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 2636−2644. DOI: 10.1021/jacs.8b12965
  5. Siau, W.-Y.; Bode, J. W. J. Am. Chem. Soc.2014, 136, 17726−17729. DOI: 10.1021/ja511232b
  6. 他にもYe, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T. Nat. Chem.2018, 10, 1037−1041. DOI: 10.1038/s41557-018-0085-9が知られる。なお、本論文報告直後、Bodeらによるolefin amine reagentを用いたN-ヘテロスピロ環構築法が報告されている。(Wang, Y.-Y.; Bode, J.w. J. Am. Chem. Soc. 2019,141, 9739−9745. DOI: 10.1021/jacs.9b05074)
  7. Trowbridge, A.; Reich, D.; Gaunt, M. J. Nature 2018, 561, 522− DOI: 10.1038/s41586-018-0537-9
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Retraction watch リトラクション・ウオッチ
  2. イスラエルの化学ってどうよ?
  3. Newton別冊「注目のスーパーマテリアル」が熱い!
  4. 含ケイ素四員環 -その1-
  5. 高分子と低分子の間にある壁 1:分子量分布
  6. 誰でも参加OK!計算化学研究を手伝おう!
  7. 3回の分子内共役付加が導くブラシリカルジンの網羅的全合成
  8. 掟破り酵素の仕組みを解く

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 根岸カルボメタル化 Negishi Carbometalation
  2. 論文をグレードアップさせるーMayer Scientific Editing
  3. 第11回 有機エレクトロニクス、分子からデバイスまで – John Anthony教授
  4. マーティン・ウィッテ Martin D. Witte
  5. アステラス製薬、過活動膀胱治療剤「ベシケア錠」製造販売承認取得
  6. 福住 俊一 Shunichi Fukuzumi
  7. 計算化学:汎関数って何?
  8. <理研研究員>「論文3本」の実験データ改ざん
  9. 緑膿菌の代謝産物をヒトの薬剤に
  10. ニュースの理由・武田、米で6年ぶり大型新薬

関連商品

注目情報

注目情報

最新記事

微小な前立腺がんを迅速・高感度に蛍光検出する

第231回のスポットライトリサーチは、河谷稔さんにお願い致しました。河谷さんが研究を実施され…

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

Chem-Station Twitter

PAGE TOP