[スポンサーリンク]

ケムステVシンポ

土釜 恭直 Kyoji Tsuchikama

[スポンサーリンク]

 

土釜 恭直Kyoji Tsuchikama)は、抗体薬物複合体(antibody-drug conjugate, ADC)などの新規ドラッグデリバリーシステムを開発している有機化学者・創薬化学者である。

The University of Texas Health Science Center at Houston, Associate Professor

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」講師

経歴

2004年 早稲田大学理工学部化学科 卒業
2007年 早稲田大学理工学術院理工学研究科 化学専攻修士課程修了
2007-2010年 日本学術振興会特別研究員(DC1)
2010年 早稲田大学理工学術院先進理工学研究科 化学・生命化学専攻博士後期課程修了(指導教員:柴田 高範 教授、博士:理学)
2010年 The Scripps Research Institute(Mentor: Dr. Kim D. Janda)
2010-2012年 日本学術振興会海外特別研究員
2014年 The University of Texas Health Science Center at Houston (UTHealth Houston) Assistant Professor (Tenure-Track)
2021年-現在 UTHealth Houston Associate Professor (Tenured)

受賞歴

2010年 日本化学会学生講演賞
2013年 Scripps California Society of Fellows Travel Award, The Scripps Research Institute, La Jolla, CA
2017年 Breakthrough Award Level 2, Breast Cancer Research Program, the Department of Defense (Grant)
2018年 Breakthrough Award Level 1, Breast Cancer Research Program, the Department of Defense (Grant)
2019年 Highlighted Early-Carrier Researcher, CICR Newsletter, American Association for Cancer Research
2020年 Maximizing Investigators’ Research Award (MIRA R35), the National Institute of General Medical Sciences, the National Institutes of Health (Grant)
2021年 Outstanding Academic Investigator Award, 12th Annual World ADC San Diego (Hanson Wade)
2022年 Best ADC Pre-clinical Publication 2021 Award, 13th Annual World ADC San Diego (Hanson Wade)

研究業績

血中で安定なADCリンカーの開発

ADCとは、モノクローナル抗体と、強い生物活性を示す低分子化合物(ペイロード)を共有結合させた分子である。抗体とペイロードをつなぐリンカー部位の化学的特性は、ADCの薬効と安全性を決定づける要素の一つであるため、緻密な分子設計が要求される。バリンーシトルリンジペプチドは、ヒト血中で比較的安定であり、がん細胞内に高発現するカテプシンによって切断されてペイロードを速やかに放出できることから、ADCリンカーとして頻用される。しかし、1)げっ歯類の血中では不安定、2)好中球が発現するエラスターゼによる分解を受け、好中球減少の一因となるなどの問題も抱えている。これらの問題を解決できれば、マウスモデルを用いた前臨床試験の信頼性を向上し、患者に投与した際の血中毒性を抑制できるものと考えられる。土釜らは、「グルタミン酸–バリン–シトルリン」からなるトリペプチドリンカーを開発した[1],[2]。P3位へのグルタミン酸の付加により、げっ歯類の血中におけるリンカーの分解が抑制された。また、リンカーの極性が向上することから、タンパク凝集や免疫原性の原因となるADCの疎水性を低減する。続けて同グループは、P2位バリンをグリシンに置換した、「グルタミン酸–グリシン–シトルリン」リンカーを報告した[3]。この改良型リンカーは、がん細胞内での酵素的切断によるペイロードの放出能を維持しつつも、好中球由来の酵素による分解に対して耐性を示す。また、疎水性のバリン側鎖が除去されているため、さらに極性が向上している。本リンカーを用いて構築したADCは、乳がん及び脳腫瘍マウスモデルにおいて既存のADCよりも強い腫瘍縮小効果を示した。また、その高い薬効にも関わらず、全身毒性プロファイルは、既存のADCと同程度もしくはそれ以上に良好であった。

Figure 1

二重ペイロード型ADC (dual-payload ADC)の開発

従来のADCリンカーの多くは直鎖型構造であり、単一のペイロードを搭載するように設計されている。多くの悪性腫瘍は、遺伝子発現プロファイルの異なる細胞の集合体であるため、各細胞のペイロードに対する感受性は異なる。そのため、単一のペイロードでは全ての細胞を網羅的に殺傷することができない。結果として、薬剤耐性の獲得を伴ったがんの再発を引き起こす可能性がある。この問題を解決すべく、土釜らは2種類の異なるペイロードを搭載できる分岐型スペーサーを開発した[4],[5]。このスペーサーを導入することで、強力な微小管阻害剤であるmonomethyl auristatin E (MMAE)とmonomethyl auristatin F (MMAF)を同時搭載したADCが構築された。この二重ペイロード型 ADCは、HER2陽性と陰性の細胞が混在し、既存のADCに耐性を示す難治性乳がんマウスモデルにおいて、著しく強い腫瘍抑制効果を示した[3],[5]

 

参考文献

[1] Anami, C. M. Yamazaki, W. Xiong, X. Gui, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 9, 2512 (2018).

[2] Anami, Y. Otani, W. Xiong, S. Y. Y. Ha, A. Yamaguchi, K. A. Rivera-Caraballo, N. Zhang, Z. An, B. Kaur, and K. Tsuchikama, Cell Rep. 39, 110839 (2022).

[3] Y. Y. Ha, Y. Anami, C. M. Yamazaki, W. Xiong, C. M. Haase, S. D. Olson, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Mol. Cancer Ther. 21, 1449 (2022).

[4] Anami, W. Xiong, X. Gui, M. Deng, C. C. Zhang, N. Zhang, Z. An, and K. Tsuchikama, Org. Biomol. Chem.15, 5635–5642 (2017).

[5] M. Yamazaki, A. Yamaguchi, Y. Anami, W. Xiong, Y. Otani, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 12, 3528 (2021).

 

関連リンク

土釜研究室ウェブサイト

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」

 

関連動画

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」の講演動画は後日公開します!

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. フランク・グローリアス Frank Glorius
  2. イリヤ・プリゴジン Ilya Prigogine
  3. 中村 修二 Shuji Nakamura
  4. キース・ファニュー Keith Fagnou
  5. マリウス・クロア G. Marius Clore
  6. バリー・トロスト Barry M. Trost
  7. サム・ゲルマン Samuel H. Gellman
  8. ハロルド・クロトー Harold Walter Kroto

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. もっと化学に光を! 今さらですが今年は光のアニバーサリーイヤー
  2. Callipeltosideの全合成と構造訂正
  3. MOFを用いることでポリアセンの合成に成功!
  4. 持続可能な社会を支えるゴム・エラストマー:新素材・自己修復・強靱化と最先端評価技術
  5. マッテソン増炭反応 Matteson Homologation
  6. Carl Boschの人生 その2
  7. 2009年9月人気化学書籍ランキング
  8. START your chemi-storyー日産化学工業会社説明会2018
  9. MNBA脱水縮合剤
  10. 【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた

bergです。この度は2023年9月8日(金)に慶応義塾大学 矢上キャンパスにて開催された西林教授の…

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP