[スポンサーリンク]

ケムステVシンポ

土釜 恭直 Kyoji Tsuchikama

[スポンサーリンク]

 

土釜 恭直Kyoji Tsuchikama)は、抗体薬物複合体(antibody-drug conjugate, ADC)などの新規ドラッグデリバリーシステムを開発している有機化学者・創薬化学者である。

The University of Texas Health Science Center at Houston, Associate Professor

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」講師

経歴

2004年 早稲田大学理工学部化学科 卒業
2007年 早稲田大学理工学術院理工学研究科 化学専攻修士課程修了
2007-2010年 日本学術振興会特別研究員(DC1)
2010年 早稲田大学理工学術院先進理工学研究科 化学・生命化学専攻博士後期課程修了(指導教員:柴田 高範 教授、博士:理学)
2010年 The Scripps Research Institute(Mentor: Dr. Kim D. Janda)
2010-2012年 日本学術振興会海外特別研究員
2014年 The University of Texas Health Science Center at Houston (UTHealth Houston) Assistant Professor (Tenure-Track)
2021年-現在 UTHealth Houston Associate Professor (Tenured)

受賞歴

2010年 日本化学会学生講演賞
2013年 Scripps California Society of Fellows Travel Award, The Scripps Research Institute, La Jolla, CA
2017年 Breakthrough Award Level 2, Breast Cancer Research Program, the Department of Defense (Grant)
2018年 Breakthrough Award Level 1, Breast Cancer Research Program, the Department of Defense (Grant)
2019年 Highlighted Early-Carrier Researcher, CICR Newsletter, American Association for Cancer Research
2020年 Maximizing Investigators’ Research Award (MIRA R35), the National Institute of General Medical Sciences, the National Institutes of Health (Grant)
2021年 Outstanding Academic Investigator Award, 12th Annual World ADC San Diego (Hanson Wade)
2022年 Best ADC Pre-clinical Publication 2021 Award, 13th Annual World ADC San Diego (Hanson Wade)

研究業績

血中で安定なADCリンカーの開発

ADCとは、モノクローナル抗体と、強い生物活性を示す低分子化合物(ペイロード)を共有結合させた分子である。抗体とペイロードをつなぐリンカー部位の化学的特性は、ADCの薬効と安全性を決定づける要素の一つであるため、緻密な分子設計が要求される。バリンーシトルリンジペプチドは、ヒト血中で比較的安定であり、がん細胞内に高発現するカテプシンによって切断されてペイロードを速やかに放出できることから、ADCリンカーとして頻用される。しかし、1)げっ歯類の血中では不安定、2)好中球が発現するエラスターゼによる分解を受け、好中球減少の一因となるなどの問題も抱えている。これらの問題を解決できれば、マウスモデルを用いた前臨床試験の信頼性を向上し、患者に投与した際の血中毒性を抑制できるものと考えられる。土釜らは、「グルタミン酸–バリン–シトルリン」からなるトリペプチドリンカーを開発した[1],[2]。P3位へのグルタミン酸の付加により、げっ歯類の血中におけるリンカーの分解が抑制された。また、リンカーの極性が向上することから、タンパク凝集や免疫原性の原因となるADCの疎水性を低減する。続けて同グループは、P2位バリンをグリシンに置換した、「グルタミン酸–グリシン–シトルリン」リンカーを報告した[3]。この改良型リンカーは、がん細胞内での酵素的切断によるペイロードの放出能を維持しつつも、好中球由来の酵素による分解に対して耐性を示す。また、疎水性のバリン側鎖が除去されているため、さらに極性が向上している。本リンカーを用いて構築したADCは、乳がん及び脳腫瘍マウスモデルにおいて既存のADCよりも強い腫瘍縮小効果を示した。また、その高い薬効にも関わらず、全身毒性プロファイルは、既存のADCと同程度もしくはそれ以上に良好であった。

Figure 1

二重ペイロード型ADC (dual-payload ADC)の開発

従来のADCリンカーの多くは直鎖型構造であり、単一のペイロードを搭載するように設計されている。多くの悪性腫瘍は、遺伝子発現プロファイルの異なる細胞の集合体であるため、各細胞のペイロードに対する感受性は異なる。そのため、単一のペイロードでは全ての細胞を網羅的に殺傷することができない。結果として、薬剤耐性の獲得を伴ったがんの再発を引き起こす可能性がある。この問題を解決すべく、土釜らは2種類の異なるペイロードを搭載できる分岐型スペーサーを開発した[4],[5]。このスペーサーを導入することで、強力な微小管阻害剤であるmonomethyl auristatin E (MMAE)とmonomethyl auristatin F (MMAF)を同時搭載したADCが構築された。この二重ペイロード型 ADCは、HER2陽性と陰性の細胞が混在し、既存のADCに耐性を示す難治性乳がんマウスモデルにおいて、著しく強い腫瘍抑制効果を示した[3],[5]

 

参考文献

[1] Anami, C. M. Yamazaki, W. Xiong, X. Gui, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 9, 2512 (2018).

[2] Anami, Y. Otani, W. Xiong, S. Y. Y. Ha, A. Yamaguchi, K. A. Rivera-Caraballo, N. Zhang, Z. An, B. Kaur, and K. Tsuchikama, Cell Rep. 39, 110839 (2022).

[3] Y. Y. Ha, Y. Anami, C. M. Yamazaki, W. Xiong, C. M. Haase, S. D. Olson, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Mol. Cancer Ther. 21, 1449 (2022).

[4] Anami, W. Xiong, X. Gui, M. Deng, C. C. Zhang, N. Zhang, Z. An, and K. Tsuchikama, Org. Biomol. Chem.15, 5635–5642 (2017).

[5] M. Yamazaki, A. Yamaguchi, Y. Anami, W. Xiong, Y. Otani, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 12, 3528 (2021).

 

関連リンク

土釜研究室ウェブサイト

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」

 

関連動画

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」の講演動画は後日公開します!

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. 小島 諒介 Ryosuke Kojima
  2. ラッセル・コックス Rusesl J. Cox
  3. 前田 和彦 Kazuhiko Maeda
  4. モーテン・メルダル Morten P. Meldal
  5. アビシェック・チャッタージー Abhishek Chatterj…
  6. イライアス・コーリー E. J. Corey
  7. 第51回ケムステVシンポ「光化学最前線2025」を開催します!
  8. 文化勲章・受章化学者一覧

注目情報

ピックアップ記事

  1. 奈良坂・プラサード還元 Narasaka-Prasad Reduction
  2. ノーベル化学賞への道公開
  3. 化学者のためのエレクトロニクス講座~化合物半導体編
  4. トーマス・トーレス Tomas Torres
  5. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  6. フローケミストリーーChemical Times特集より
  7. 博士課程学生の経済事情
  8. ウーロン茶の中でも医薬品の化学合成が可能に
  9. 新たな要求に応えるために発展するフッ素樹脂の接着・接合技術
  10. 東日本大震災から1年

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP