[スポンサーリンク]

ケムステVシンポ

土釜 恭直 Kyoji Tsuchikama

[スポンサーリンク]

 

土釜 恭直Kyoji Tsuchikama)は、抗体薬物複合体(antibody-drug conjugate, ADC)などの新規ドラッグデリバリーシステムを開発している有機化学者・創薬化学者である。

The University of Texas Health Science Center at Houston, Associate Professor

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」講師

経歴

2004年 早稲田大学理工学部化学科 卒業
2007年 早稲田大学理工学術院理工学研究科 化学専攻修士課程修了
2007-2010年 日本学術振興会特別研究員(DC1)
2010年 早稲田大学理工学術院先進理工学研究科 化学・生命化学専攻博士後期課程修了(指導教員:柴田 高範 教授、博士:理学)
2010年 The Scripps Research Institute(Mentor: Dr. Kim D. Janda)
2010-2012年 日本学術振興会海外特別研究員
2014年 The University of Texas Health Science Center at Houston (UTHealth Houston) Assistant Professor (Tenure-Track)
2021年-現在 UTHealth Houston Associate Professor (Tenured)

受賞歴

2010年 日本化学会学生講演賞
2013年 Scripps California Society of Fellows Travel Award, The Scripps Research Institute, La Jolla, CA
2017年 Breakthrough Award Level 2, Breast Cancer Research Program, the Department of Defense (Grant)
2018年 Breakthrough Award Level 1, Breast Cancer Research Program, the Department of Defense (Grant)
2019年 Highlighted Early-Carrier Researcher, CICR Newsletter, American Association for Cancer Research
2020年 Maximizing Investigators’ Research Award (MIRA R35), the National Institute of General Medical Sciences, the National Institutes of Health (Grant)
2021年 Outstanding Academic Investigator Award, 12th Annual World ADC San Diego (Hanson Wade)
2022年 Best ADC Pre-clinical Publication 2021 Award, 13th Annual World ADC San Diego (Hanson Wade)

研究業績

血中で安定なADCリンカーの開発

ADCとは、モノクローナル抗体と、強い生物活性を示す低分子化合物(ペイロード)を共有結合させた分子である。抗体とペイロードをつなぐリンカー部位の化学的特性は、ADCの薬効と安全性を決定づける要素の一つであるため、緻密な分子設計が要求される。バリンーシトルリンジペプチドは、ヒト血中で比較的安定であり、がん細胞内に高発現するカテプシンによって切断されてペイロードを速やかに放出できることから、ADCリンカーとして頻用される。しかし、1)げっ歯類の血中では不安定、2)好中球が発現するエラスターゼによる分解を受け、好中球減少の一因となるなどの問題も抱えている。これらの問題を解決できれば、マウスモデルを用いた前臨床試験の信頼性を向上し、患者に投与した際の血中毒性を抑制できるものと考えられる。土釜らは、「グルタミン酸–バリン–シトルリン」からなるトリペプチドリンカーを開発した[1],[2]。P3位へのグルタミン酸の付加により、げっ歯類の血中におけるリンカーの分解が抑制された。また、リンカーの極性が向上することから、タンパク凝集や免疫原性の原因となるADCの疎水性を低減する。続けて同グループは、P2位バリンをグリシンに置換した、「グルタミン酸–グリシン–シトルリン」リンカーを報告した[3]。この改良型リンカーは、がん細胞内での酵素的切断によるペイロードの放出能を維持しつつも、好中球由来の酵素による分解に対して耐性を示す。また、疎水性のバリン側鎖が除去されているため、さらに極性が向上している。本リンカーを用いて構築したADCは、乳がん及び脳腫瘍マウスモデルにおいて既存のADCよりも強い腫瘍縮小効果を示した。また、その高い薬効にも関わらず、全身毒性プロファイルは、既存のADCと同程度もしくはそれ以上に良好であった。

Figure 1

二重ペイロード型ADC (dual-payload ADC)の開発

従来のADCリンカーの多くは直鎖型構造であり、単一のペイロードを搭載するように設計されている。多くの悪性腫瘍は、遺伝子発現プロファイルの異なる細胞の集合体であるため、各細胞のペイロードに対する感受性は異なる。そのため、単一のペイロードでは全ての細胞を網羅的に殺傷することができない。結果として、薬剤耐性の獲得を伴ったがんの再発を引き起こす可能性がある。この問題を解決すべく、土釜らは2種類の異なるペイロードを搭載できる分岐型スペーサーを開発した[4],[5]。このスペーサーを導入することで、強力な微小管阻害剤であるmonomethyl auristatin E (MMAE)とmonomethyl auristatin F (MMAF)を同時搭載したADCが構築された。この二重ペイロード型 ADCは、HER2陽性と陰性の細胞が混在し、既存のADCに耐性を示す難治性乳がんマウスモデルにおいて、著しく強い腫瘍抑制効果を示した[3],[5]

 

参考文献

[1] Anami, C. M. Yamazaki, W. Xiong, X. Gui, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 9, 2512 (2018).

[2] Anami, Y. Otani, W. Xiong, S. Y. Y. Ha, A. Yamaguchi, K. A. Rivera-Caraballo, N. Zhang, Z. An, B. Kaur, and K. Tsuchikama, Cell Rep. 39, 110839 (2022).

[3] Y. Y. Ha, Y. Anami, C. M. Yamazaki, W. Xiong, C. M. Haase, S. D. Olson, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Mol. Cancer Ther. 21, 1449 (2022).

[4] Anami, W. Xiong, X. Gui, M. Deng, C. C. Zhang, N. Zhang, Z. An, and K. Tsuchikama, Org. Biomol. Chem.15, 5635–5642 (2017).

[5] M. Yamazaki, A. Yamaguchi, Y. Anami, W. Xiong, Y. Otani, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 12, 3528 (2021).

 

関連リンク

土釜研究室ウェブサイト

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」

 

関連動画

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」の講演動画は後日公開します!

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. 第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します…
  2. 第13回ケムステVシンポジウム「創薬化学最前線」を開催します!
  3. チャオ=ジュン・リー Chao-Jun Li
  4. 第22回ケムステVシンポ「次世代DDSナノキャリア」を開催します…
  5. チャールズ・スターク・ドレイパー賞―受賞者一覧
  6. 第26回ケムステVシンポ「創薬モダリティ座談会」を開催します!
  7. ロバート・クラブトリー Robert H. Crabtree
  8. 陰山 洋 Hiroshi Kageyama

注目情報

ピックアップ記事

  1. 【日産化学 23卒/Zoomウェビナー配信!】START your chemi-story あなたの化学をさがす 研究職限定 キャリアマッチングLIVE
  2. 「新規高活性アルコール酸化触媒 nor-AZADOの有用性」 第1回 Wako 有機合成セミナー オンデマンド配信を開始! 富士フイルム和光純薬
  3. 最新プリント配線板技術ロードマップセミナー開催発表!
  4. Reaxys Prize 2011募集中!
  5. バールエンガ試薬 Barluenga’s Reagent
  6. Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
  7. ポンコツ博士の海外奮闘録① 〜博士,米国に上陸す〜
  8. セリ科植物に含まれる生理活性成分
  9. 大型リチウムイオン電池及び関連商品・構成材料の開発【終了】
  10. 有機薄膜太陽電池の”最新”開発動向

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP