[スポンサーリンク]

ケムステVシンポ

土釜 恭直 Kyoji Tsuchikama

[スポンサーリンク]

 

土釜 恭直Kyoji Tsuchikama)は、抗体薬物複合体(antibody-drug conjugate, ADC)などの新規ドラッグデリバリーシステムを開発している有機化学者・創薬化学者である。

The University of Texas Health Science Center at Houston, Associate Professor

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」講師

経歴

2004年 早稲田大学理工学部化学科 卒業
2007年 早稲田大学理工学術院理工学研究科 化学専攻修士課程修了
2007-2010年 日本学術振興会特別研究員(DC1)
2010年 早稲田大学理工学術院先進理工学研究科 化学・生命化学専攻博士後期課程修了(指導教員:柴田 高範 教授、博士:理学)
2010年 The Scripps Research Institute(Mentor: Dr. Kim D. Janda)
2010-2012年 日本学術振興会海外特別研究員
2014年 The University of Texas Health Science Center at Houston (UTHealth Houston) Assistant Professor (Tenure-Track)
2021年-現在 UTHealth Houston Associate Professor (Tenured)

受賞歴

2010年 日本化学会学生講演賞
2013年 Scripps California Society of Fellows Travel Award, The Scripps Research Institute, La Jolla, CA
2017年 Breakthrough Award Level 2, Breast Cancer Research Program, the Department of Defense (Grant)
2018年 Breakthrough Award Level 1, Breast Cancer Research Program, the Department of Defense (Grant)
2019年 Highlighted Early-Carrier Researcher, CICR Newsletter, American Association for Cancer Research
2020年 Maximizing Investigators’ Research Award (MIRA R35), the National Institute of General Medical Sciences, the National Institutes of Health (Grant)
2021年 Outstanding Academic Investigator Award, 12th Annual World ADC San Diego (Hanson Wade)
2022年 Best ADC Pre-clinical Publication 2021 Award, 13th Annual World ADC San Diego (Hanson Wade)

研究業績

血中で安定なADCリンカーの開発

ADCとは、モノクローナル抗体と、強い生物活性を示す低分子化合物(ペイロード)を共有結合させた分子である。抗体とペイロードをつなぐリンカー部位の化学的特性は、ADCの薬効と安全性を決定づける要素の一つであるため、緻密な分子設計が要求される。バリンーシトルリンジペプチドは、ヒト血中で比較的安定であり、がん細胞内に高発現するカテプシンによって切断されてペイロードを速やかに放出できることから、ADCリンカーとして頻用される。しかし、1)げっ歯類の血中では不安定、2)好中球が発現するエラスターゼによる分解を受け、好中球減少の一因となるなどの問題も抱えている。これらの問題を解決できれば、マウスモデルを用いた前臨床試験の信頼性を向上し、患者に投与した際の血中毒性を抑制できるものと考えられる。土釜らは、「グルタミン酸–バリン–シトルリン」からなるトリペプチドリンカーを開発した[1],[2]。P3位へのグルタミン酸の付加により、げっ歯類の血中におけるリンカーの分解が抑制された。また、リンカーの極性が向上することから、タンパク凝集や免疫原性の原因となるADCの疎水性を低減する。続けて同グループは、P2位バリンをグリシンに置換した、「グルタミン酸–グリシン–シトルリン」リンカーを報告した[3]。この改良型リンカーは、がん細胞内での酵素的切断によるペイロードの放出能を維持しつつも、好中球由来の酵素による分解に対して耐性を示す。また、疎水性のバリン側鎖が除去されているため、さらに極性が向上している。本リンカーを用いて構築したADCは、乳がん及び脳腫瘍マウスモデルにおいて既存のADCよりも強い腫瘍縮小効果を示した。また、その高い薬効にも関わらず、全身毒性プロファイルは、既存のADCと同程度もしくはそれ以上に良好であった。

Figure 1

二重ペイロード型ADC (dual-payload ADC)の開発

従来のADCリンカーの多くは直鎖型構造であり、単一のペイロードを搭載するように設計されている。多くの悪性腫瘍は、遺伝子発現プロファイルの異なる細胞の集合体であるため、各細胞のペイロードに対する感受性は異なる。そのため、単一のペイロードでは全ての細胞を網羅的に殺傷することができない。結果として、薬剤耐性の獲得を伴ったがんの再発を引き起こす可能性がある。この問題を解決すべく、土釜らは2種類の異なるペイロードを搭載できる分岐型スペーサーを開発した[4],[5]。このスペーサーを導入することで、強力な微小管阻害剤であるmonomethyl auristatin E (MMAE)とmonomethyl auristatin F (MMAF)を同時搭載したADCが構築された。この二重ペイロード型 ADCは、HER2陽性と陰性の細胞が混在し、既存のADCに耐性を示す難治性乳がんマウスモデルにおいて、著しく強い腫瘍抑制効果を示した[3],[5]

 

参考文献

[1] Anami, C. M. Yamazaki, W. Xiong, X. Gui, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 9, 2512 (2018).

[2] Anami, Y. Otani, W. Xiong, S. Y. Y. Ha, A. Yamaguchi, K. A. Rivera-Caraballo, N. Zhang, Z. An, B. Kaur, and K. Tsuchikama, Cell Rep. 39, 110839 (2022).

[3] Y. Y. Ha, Y. Anami, C. M. Yamazaki, W. Xiong, C. M. Haase, S. D. Olson, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Mol. Cancer Ther. 21, 1449 (2022).

[4] Anami, W. Xiong, X. Gui, M. Deng, C. C. Zhang, N. Zhang, Z. An, and K. Tsuchikama, Org. Biomol. Chem.15, 5635–5642 (2017).

[5] M. Yamazaki, A. Yamaguchi, Y. Anami, W. Xiong, Y. Otani, J. Lee, N. T. Ueno, N. Zhang, Z. An, and K. Tsuchikama, Nat. Commun. 12, 3528 (2021).

 

関連リンク

土釜研究室ウェブサイト

第37回 ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」

 

関連動画

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」の講演動画は後日公開します!

Macy

投稿者の記事一覧

有機合成を専門とする教員。将来取り組む研究分野を探し求める「なんでも屋」。若いうちに色々なケミストリーに触れようと邁進中。

関連記事

  1. 伊丹健一郎 Kenichiro Itami
  2. ウェルチ化学賞・受賞者一覧
  3. 入江 正浩 Masahiro Irie
  4. 陰山 洋 Hiroshi Kageyama
  5. ローランド・フィッシャー Roland A. Fischer
  6. 吉良 満夫 Mitsuo Kira
  7. 橘 熊野 Yuya Tachibana
  8. 平田義正メモリアルレクチャー賞(平田賞)

注目情報

ピックアップ記事

  1. 2023年ノーベル化学賞ケムステ予想当選者発表!
  2. トム・マイモニ Thomas J. Maimone
  3. カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される
  4. DABを用いた一級アミノ基の選択的保護および脱保護反応
  5. 【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!
  6. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?
  7. 大学院から始めるストレスマネジメント【アメリカで Ph.D. を取る –オリエンテーションの巻 その 1–】
  8. 酵素発現領域を染め分ける高感度ラマンプローブの開発
  9. ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)
  10. 村橋 俊一 Shun-Ichi Murahashi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

ファンデルワールス力で分子を接着して三次元の構造体を組み上げる

第 656 回のスポットライトリサーチは、京都大学 物質-細胞統合システム拠点 (iCeMS) 古川…

第54回複素環化学討論会 @ 東京大学

開催概要第54回複素環化学討論会日時:2025年10月9日(木)~10月11日(土)会場…

クソニンジンのはなし ~草餅の邪魔者~

Tshozoです。昔住んでいた社宅近くの空き地の斜面に結構な数の野草があって、中でもヨモギは春に…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP