[スポンサーリンク]

化学者のつぶやき

House-Meinwald転位で立体を操る

[スポンサーリンク]

非対称四置換エポキシドからキラルBrønsted酸触媒により、不斉四級炭素をもつα,α-ジアリールケトンを合成できる。非環状ケトンにも適用可能である。

House-Meinwald転位

α位に不斉四級炭素を有するケトンは、有用な合成中間体であるため、その合成法は広く研究されている。一般的に、これらケトンはエノラートを経由する不斉α-アリール化、α-アルキル化により合成される[1]

一方で、1955年に開発されたHouse–Meinwald転位は、酸触媒によりエポキシドをケトンもしくはアルデヒドへと変換できるため、α-置換カルボニル化合物の効率的合成法として知られる(Figure 1A)[2]。しかし、転位の際の立体制御が困難なことから、エナンチオ選択的な例は限られていた。

2006年にShiらは、化学量論量のルイス酸(Et2AlCl)を用いたHouse–Meinwald転位による不斉転写を行い、光学活性ケトンを合成することに成功した(Figure 1B)[3]。しかし、歪みのある小員環をもつ化合物のみに適用可能であり、原料に光学活性エポキシド(Shi不斉エポキシ化による合成)が必要であった。また、ごく最近Zhuらによって、キラルなα,α-ジアリールシクロヘキサノンの合成が報告された(Figure 1C)[4]。キラルBrønsted酸(リン酸アミド)触媒により、不斉House–Meinwald転位を達成しているが、生成物はシクロヘキサノン骨格に限られる。

今回、香港大学のSunらは、主にキラルBrønsted酸触媒(リン酸)C1を用いた不斉House–Meinwald転位を開発した(Figure 1D)。Zhuらの報告と比べ、非環状ケトンを含む、より広範なキラルα,α-ジアリールケトンを合成できる。

Figure 1. House-Meinwald転位

 

“Catalytic Enantioselective HouseMeinwald Rearrangement: Efficient Construction of All-Carbon Quaternary Stereocenters”

Ma, D.; Miao, C.; Sun,J. J. Am. Chem. Soc. 2019, 141, 13783–13787. DOI:10.1021/jacs.9b07514

論文著者の紹介


研究者:Jianwei Sun

研究者の経歴:
-2004 BSc, MSc, Nanjing University, China (Prof. Y. Hu)
2004-2008 Ph.D., University of Chicago, USA (Prof. A. Kozmin)
2008-2010 Postdoc, Massachusetts Institute of Technology, USA (Prof. G. Fu)
2010-2019 Assistant Professor, Hong Kong University of Science and Technology
2019- Professor, Hong Kong University of Science and Technology
研究内容:不斉求核触媒開発、Brønsted/Lewis酸触媒開発、生理活性物質および集光性材料の合成

論文の概要

本反応では環状の置換基をもつエポキシド1に対し触媒量(1 mol%)のキラルリン酸(R)-C1を作用させることで、不斉四級炭素をもつα,α-ジアリールケトン2が高収率・高エナンチオ選択的に得られる(Figure 2A)。アリール基上の置換基として、ホルミル基やアルキン、ハロゲンなどをもつ場合も問題なく反応は進行する(2b2e)。一方で、非環状置換基をもつエポキシド3では、(S)-A3を用いることで非環状のα-キラルケトン4a, 4bを高収率・高エナンチオ選択的に合成できた。また、アルキル鎖Rを伸長した場合、(R)-A5が最適であった(4c)。なお、アリール基上のヒドロキシ基をメトキシ基に変えるとエナンチオ選択性が著しく低下する。そこで、さらなる触媒検討を行い、環状の場合は(R)-Dを、非環状の場合は(R)-Eを用いることで、エナンチオ選択性の低下を抑制できた(2f and4d)。

著者らは以下のような反応機構を提唱している(Figure 2B)。まず、酸触媒により位置選択的なエポキシドIの開環が進行し、ジベンジルカチオンIIが生じる。IIの共鳴構造であるIIIから、エナンチオ選択的なセミピナコール型の1,2-アルキル転位により、α-キラルケトンIVが生成する。なお、キラル触媒(S)-A3と生成物4それぞれの鏡像体過剰率に非線形相関がみられたことから、IIIに示すような複数の触媒が架橋した遷移状態が提案されている(Figure 2C)。一方で、環状置換基をもつ場合は直線関係がみられており、非環状ケトンの場合とは異なる遷移状態を経由しているとしているが、詳細な機構は不明である。

Figure 2. (A) (B) 条件および基質適応範囲、(C)推定反応機構

 

以上、キラルリン酸触媒を用いた不斉House–Meinwald転位が開発された。キラルα,α-ジアリールケトンが高収率で得られるため、医薬品や農薬など創薬分野での応用が期待できる。

参考文献

  1. (a) Quasdorf, K. W.; Overman, L. E. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocentres. Nature. 2014,516, 181–191. DOI: 1038/nature14007(b)Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Catalytic Enantioselective Construction of Quaternary Stereo-centers: Assembly of Key Building Blocks for the Synthesis of Biologically Active Molecules. Acc. Chem. Res.2015,48, 740–751. DOI: 10.1021/ar5004658
  2. (a) House, H. O. The Acid-catalyzed Rearrangement of the Stilbene Oxides. J. Am. Chem. Soc. 1955, 77, 3070–3075. DOI: 10.1021/ja01616a041(b) Meinwald, J.; Labana, S. S.; Chadha, M. S. Peracid Reactions. III. The Oxidation of Bicyclo[2.2.1]heptadiene. J. Am. Chem. Soc. 1963, 85, 582–585. DOI: 10.1021/ja00888a022
  3. (a) Shen, Y.-M.; Wang, B.; Shi, Y. Enantioselective Synthesis of 2-Aryl Cyclopentanones by Asymmetric Epoxidation and Epoxide Rearrangement. Angew. Chem., Int. Ed. 2006, 45, 1429–1432. DOI: 10.1002/anie.200501520(b) Shen, Y.-M.; Wang, B.; Shi, Y. Enantioselective Synthesis of 2-Alkyl-2-aryl Cyclopentanones by Asymmetric Epoxidation of Tetrasubstituted Cyclobutylidene Olefins and Epoxide Rearrangement. TetrahedronLett. 2006,47, 5455–5458. DOI:10.1016/j.tetlet.2006.05.175
  4. Wu, H.; Wang, Q.; Zhu, J. Catalytic Enantioselective Pinacol and Meinwald Rearrangements for the Construction of Quaternary Stereocenters. J. Am. Chem. Soc. 2019, 141, 11372–11377. DOI: 10.1021/jacs.9b04551
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 高分子鎖を簡単に垂直に立てる -表面偏析と自己組織化による高分子…
  2. 投票!2014年ノーベル化学賞は誰の手に??
  3. AIBNに代わるアゾ開始剤!優れた特長や金属管理グレート品、研究…
  4. ケムステV年末ライブ & V忘年会2021を開催します…
  5. 高純度フッ化水素酸のあれこれまとめ その2
  6. スイスの博士課程ってどうなの?1〜ヨーロッパの博士課程を知る〜
  7. 化学構造式描画のスタンダードを学ぼう!【応用編】
  8. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使…

注目情報

ピックアップ記事

  1. 美しきガラス器具製作の世界
  2. 第12回慶應有機化学若手シンポジウム
  3. 血液―脳関門透過抗体 BBB-penetrating Antibody
  4. 【6月開催】第九回 マツモトファインケミカル技術セミナー 有機金属化合物「オルガチックス」の密着性向上剤としての利用 -添加剤としての利用-
  5. 分子運動を世界最高速ムービーで捉える!
  6. 「花粉のつきにくいスーツ」登場
  7. ケージ内で反応を進行させる超分子不斉触媒
  8. トップ研究論文を使って学ぶ!非ネイティブ研究者のための科学英語自習ツール『CASPArS』
  9. 第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授
  10. パーフルオロ系界面活性剤のはなし 追加トピック

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP