[スポンサーリンク]

化学者のつぶやき

House-Meinwald転位で立体を操る

[スポンサーリンク]

非対称四置換エポキシドからキラルBrønsted酸触媒により、不斉四級炭素をもつα,α-ジアリールケトンを合成できる。非環状ケトンにも適用可能である。

House-Meinwald転位

α位に不斉四級炭素を有するケトンは、有用な合成中間体であるため、その合成法は広く研究されている。一般的に、これらケトンはエノラートを経由する不斉α-アリール化、α-アルキル化により合成される[1]

一方で、1955年に開発されたHouse–Meinwald転位は、酸触媒によりエポキシドをケトンもしくはアルデヒドへと変換できるため、α-置換カルボニル化合物の効率的合成法として知られる(Figure 1A)[2]。しかし、転位の際の立体制御が困難なことから、エナンチオ選択的な例は限られていた。

2006年にShiらは、化学量論量のルイス酸(Et2AlCl)を用いたHouse–Meinwald転位による不斉転写を行い、光学活性ケトンを合成することに成功した(Figure 1B)[3]。しかし、歪みのある小員環をもつ化合物のみに適用可能であり、原料に光学活性エポキシド(Shi不斉エポキシ化による合成)が必要であった。また、ごく最近Zhuらによって、キラルなα,α-ジアリールシクロヘキサノンの合成が報告された(Figure 1C)[4]。キラルBrønsted酸(リン酸アミド)触媒により、不斉House–Meinwald転位を達成しているが、生成物はシクロヘキサノン骨格に限られる。

今回、香港大学のSunらは、主にキラルBrønsted酸触媒(リン酸)C1を用いた不斉House–Meinwald転位を開発した(Figure 1D)。Zhuらの報告と比べ、非環状ケトンを含む、より広範なキラルα,α-ジアリールケトンを合成できる。

Figure 1. House-Meinwald転位

 

“Catalytic Enantioselective HouseMeinwald Rearrangement: Efficient Construction of All-Carbon Quaternary Stereocenters”

Ma, D.; Miao, C.; Sun,J. J. Am. Chem. Soc. 2019, 141, 13783–13787. DOI:10.1021/jacs.9b07514

論文著者の紹介


研究者:Jianwei Sun

研究者の経歴:
-2004 BSc, MSc, Nanjing University, China (Prof. Y. Hu)
2004-2008 Ph.D., University of Chicago, USA (Prof. A. Kozmin)
2008-2010 Postdoc, Massachusetts Institute of Technology, USA (Prof. G. Fu)
2010-2019 Assistant Professor, Hong Kong University of Science and Technology
2019- Professor, Hong Kong University of Science and Technology
研究内容:不斉求核触媒開発、Brønsted/Lewis酸触媒開発、生理活性物質および集光性材料の合成

論文の概要

本反応では環状の置換基をもつエポキシド1に対し触媒量(1 mol%)のキラルリン酸(R)-C1を作用させることで、不斉四級炭素をもつα,α-ジアリールケトン2が高収率・高エナンチオ選択的に得られる(Figure 2A)。アリール基上の置換基として、ホルミル基やアルキン、ハロゲンなどをもつ場合も問題なく反応は進行する(2b2e)。一方で、非環状置換基をもつエポキシド3では、(S)-A3を用いることで非環状のα-キラルケトン4a, 4bを高収率・高エナンチオ選択的に合成できた。また、アルキル鎖Rを伸長した場合、(R)-A5が最適であった(4c)。なお、アリール基上のヒドロキシ基をメトキシ基に変えるとエナンチオ選択性が著しく低下する。そこで、さらなる触媒検討を行い、環状の場合は(R)-Dを、非環状の場合は(R)-Eを用いることで、エナンチオ選択性の低下を抑制できた(2f and4d)。

著者らは以下のような反応機構を提唱している(Figure 2B)。まず、酸触媒により位置選択的なエポキシドIの開環が進行し、ジベンジルカチオンIIが生じる。IIの共鳴構造であるIIIから、エナンチオ選択的なセミピナコール型の1,2-アルキル転位により、α-キラルケトンIVが生成する。なお、キラル触媒(S)-A3と生成物4それぞれの鏡像体過剰率に非線形相関がみられたことから、IIIに示すような複数の触媒が架橋した遷移状態が提案されている(Figure 2C)。一方で、環状置換基をもつ場合は直線関係がみられており、非環状ケトンの場合とは異なる遷移状態を経由しているとしているが、詳細な機構は不明である。

Figure 2. (A) (B) 条件および基質適応範囲、(C)推定反応機構

 

以上、キラルリン酸触媒を用いた不斉House–Meinwald転位が開発された。キラルα,α-ジアリールケトンが高収率で得られるため、医薬品や農薬など創薬分野での応用が期待できる。

参考文献

  1. (a) Quasdorf, K. W.; Overman, L. E. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocentres. Nature. 2014,516, 181–191. DOI: 1038/nature14007(b)Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Catalytic Enantioselective Construction of Quaternary Stereo-centers: Assembly of Key Building Blocks for the Synthesis of Biologically Active Molecules. Acc. Chem. Res.2015,48, 740–751. DOI: 10.1021/ar5004658
  2. (a) House, H. O. The Acid-catalyzed Rearrangement of the Stilbene Oxides. J. Am. Chem. Soc. 1955, 77, 3070–3075. DOI: 10.1021/ja01616a041(b) Meinwald, J.; Labana, S. S.; Chadha, M. S. Peracid Reactions. III. The Oxidation of Bicyclo[2.2.1]heptadiene. J. Am. Chem. Soc. 1963, 85, 582–585. DOI: 10.1021/ja00888a022
  3. (a) Shen, Y.-M.; Wang, B.; Shi, Y. Enantioselective Synthesis of 2-Aryl Cyclopentanones by Asymmetric Epoxidation and Epoxide Rearrangement. Angew. Chem., Int. Ed. 2006, 45, 1429–1432. DOI: 10.1002/anie.200501520(b) Shen, Y.-M.; Wang, B.; Shi, Y. Enantioselective Synthesis of 2-Alkyl-2-aryl Cyclopentanones by Asymmetric Epoxidation of Tetrasubstituted Cyclobutylidene Olefins and Epoxide Rearrangement. TetrahedronLett. 2006,47, 5455–5458. DOI:10.1016/j.tetlet.2006.05.175
  4. Wu, H.; Wang, Q.; Zhu, J. Catalytic Enantioselective Pinacol and Meinwald Rearrangements for the Construction of Quaternary Stereocenters. J. Am. Chem. Soc. 2019, 141, 11372–11377. DOI: 10.1021/jacs.9b04551
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. オペレーションはイノベーションの夢を見るか? その2
  2. アレクセイ・チチバビン ~もうひとりのロシア有機化学の父~
  3. 大阪大学インタラクティブ合宿セミナーに参加しました
  4. 製薬会社のテレビCMがステキです
  5. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(…
  6. 植物生合成の謎を解明!?Heteroyohimbine の立体制…
  7. 文献管理ソフトを徹底比較!
  8. 総収率57%! 超効率的なタミフルの全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マイクロリアクター徹底活用セミナー【終了】
  2. 引っ張ると白色蛍光を示すゴム材料
  3. IGZO
  4. むずかしいことば?
  5. Actinophyllic Acidの全合成
  6. ターボグリニャール試薬 Turbo Grignard Reagent
  7. グリーンケミストリー Green Chemistry
  8. Dead Endを回避せよ!「全合成・極限からの一手」⑨
  9. 化学に関係ある国旗を集めてみた
  10. ニッケル-可視光レドックス協働触媒系によるC(sp3)-Hチオカルボニル化

関連商品

注目情報

注目情報

最新記事

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–

ケムステ海外研究記の第 33 回はテキサス大学 Liu 研究室に留学されていた牛丸理一郎先生にお願い…

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

Chem-Station Twitter

PAGE TOP