[スポンサーリンク]

化学者のつぶやき

House-Meinwald転位で立体を操る

[スポンサーリンク]

非対称四置換エポキシドからキラルBrønsted酸触媒により、不斉四級炭素をもつα,α-ジアリールケトンを合成できる。非環状ケトンにも適用可能である。

House-Meinwald転位

α位に不斉四級炭素を有するケトンは、有用な合成中間体であるため、その合成法は広く研究されている。一般的に、これらケトンはエノラートを経由する不斉α-アリール化、α-アルキル化により合成される[1]

一方で、1955年に開発されたHouse–Meinwald転位は、酸触媒によりエポキシドをケトンもしくはアルデヒドへと変換できるため、α-置換カルボニル化合物の効率的合成法として知られる(Figure 1A)[2]。しかし、転位の際の立体制御が困難なことから、エナンチオ選択的な例は限られていた。

2006年にShiらは、化学量論量のルイス酸(Et2AlCl)を用いたHouse–Meinwald転位による不斉転写を行い、光学活性ケトンを合成することに成功した(Figure 1B)[3]。しかし、歪みのある小員環をもつ化合物のみに適用可能であり、原料に光学活性エポキシド(Shi不斉エポキシ化による合成)が必要であった。また、ごく最近Zhuらによって、キラルなα,α-ジアリールシクロヘキサノンの合成が報告された(Figure 1C)[4]。キラルBrønsted酸(リン酸アミド)触媒により、不斉House–Meinwald転位を達成しているが、生成物はシクロヘキサノン骨格に限られる。

今回、香港大学のSunらは、主にキラルBrønsted酸触媒(リン酸)C1を用いた不斉House–Meinwald転位を開発した(Figure 1D)。Zhuらの報告と比べ、非環状ケトンを含む、より広範なキラルα,α-ジアリールケトンを合成できる。

Figure 1. House-Meinwald転位

 

“Catalytic Enantioselective HouseMeinwald Rearrangement: Efficient Construction of All-Carbon Quaternary Stereocenters”

Ma, D.; Miao, C.; Sun,J. J. Am. Chem. Soc. 2019, 141, 13783–13787. DOI:10.1021/jacs.9b07514

論文著者の紹介


研究者:Jianwei Sun

研究者の経歴:
-2004 BSc, MSc, Nanjing University, China (Prof. Y. Hu)
2004-2008 Ph.D., University of Chicago, USA (Prof. A. Kozmin)
2008-2010 Postdoc, Massachusetts Institute of Technology, USA (Prof. G. Fu)
2010-2019 Assistant Professor, Hong Kong University of Science and Technology
2019- Professor, Hong Kong University of Science and Technology
研究内容:不斉求核触媒開発、Brønsted/Lewis酸触媒開発、生理活性物質および集光性材料の合成

論文の概要

本反応では環状の置換基をもつエポキシド1に対し触媒量(1 mol%)のキラルリン酸(R)-C1を作用させることで、不斉四級炭素をもつα,α-ジアリールケトン2が高収率・高エナンチオ選択的に得られる(Figure 2A)。アリール基上の置換基として、ホルミル基やアルキン、ハロゲンなどをもつ場合も問題なく反応は進行する(2b2e)。一方で、非環状置換基をもつエポキシド3では、(S)-A3を用いることで非環状のα-キラルケトン4a, 4bを高収率・高エナンチオ選択的に合成できた。また、アルキル鎖Rを伸長した場合、(R)-A5が最適であった(4c)。なお、アリール基上のヒドロキシ基をメトキシ基に変えるとエナンチオ選択性が著しく低下する。そこで、さらなる触媒検討を行い、環状の場合は(R)-Dを、非環状の場合は(R)-Eを用いることで、エナンチオ選択性の低下を抑制できた(2f and4d)。

著者らは以下のような反応機構を提唱している(Figure 2B)。まず、酸触媒により位置選択的なエポキシドIの開環が進行し、ジベンジルカチオンIIが生じる。IIの共鳴構造であるIIIから、エナンチオ選択的なセミピナコール型の1,2-アルキル転位により、α-キラルケトンIVが生成する。なお、キラル触媒(S)-A3と生成物4それぞれの鏡像体過剰率に非線形相関がみられたことから、IIIに示すような複数の触媒が架橋した遷移状態が提案されている(Figure 2C)。一方で、環状置換基をもつ場合は直線関係がみられており、非環状ケトンの場合とは異なる遷移状態を経由しているとしているが、詳細な機構は不明である。

Figure 2. (A) (B) 条件および基質適応範囲、(C)推定反応機構

 

以上、キラルリン酸触媒を用いた不斉House–Meinwald転位が開発された。キラルα,α-ジアリールケトンが高収率で得られるため、医薬品や農薬など創薬分野での応用が期待できる。

参考文献

  1. (a) Quasdorf, K. W.; Overman, L. E. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocentres. Nature. 2014,516, 181–191. DOI: 1038/nature14007(b)Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Catalytic Enantioselective Construction of Quaternary Stereo-centers: Assembly of Key Building Blocks for the Synthesis of Biologically Active Molecules. Acc. Chem. Res.2015,48, 740–751. DOI: 10.1021/ar5004658
  2. (a) House, H. O. The Acid-catalyzed Rearrangement of the Stilbene Oxides. J. Am. Chem. Soc. 1955, 77, 3070–3075. DOI: 10.1021/ja01616a041(b) Meinwald, J.; Labana, S. S.; Chadha, M. S. Peracid Reactions. III. The Oxidation of Bicyclo[2.2.1]heptadiene. J. Am. Chem. Soc. 1963, 85, 582–585. DOI: 10.1021/ja00888a022
  3. (a) Shen, Y.-M.; Wang, B.; Shi, Y. Enantioselective Synthesis of 2-Aryl Cyclopentanones by Asymmetric Epoxidation and Epoxide Rearrangement. Angew. Chem., Int. Ed. 2006, 45, 1429–1432. DOI: 10.1002/anie.200501520(b) Shen, Y.-M.; Wang, B.; Shi, Y. Enantioselective Synthesis of 2-Alkyl-2-aryl Cyclopentanones by Asymmetric Epoxidation of Tetrasubstituted Cyclobutylidene Olefins and Epoxide Rearrangement. TetrahedronLett. 2006,47, 5455–5458. DOI:10.1016/j.tetlet.2006.05.175
  4. Wu, H.; Wang, Q.; Zhu, J. Catalytic Enantioselective Pinacol and Meinwald Rearrangements for the Construction of Quaternary Stereocenters. J. Am. Chem. Soc. 2019, 141, 11372–11377. DOI: 10.1021/jacs.9b04551

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 基礎有機化学討論会開催中
  2. Macユーザーに朗報!ChemDrawとWordが相互貼付可能に…
  3. NMRの測定がうまくいかないとき(2)
  4. Ni(0)/SPoxIm錯体を利用した室温におけるCOの可逆的化…
  5. NeoCube 「ネオキューブ」
  6. 植物毒の現地合成による新規がん治療法の開発
  7. 第四回Vプレミアレクチャー「金属錯体を利用した光化学アップコンバ…
  8. 第二回ケムステVシンポ「光化学へようこそ!」開催報告

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくある失敗とその対策とは?
  2. 有機金属反応剤ハンドブック―3Liから83Biまで
  3. 有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フッ素ホウ素化・Chemically engineered extracts・クロロアルケン・ニトレン
  4. 色の変わる分子〜クロミック分子〜
  5. エステルからエーテルをつくる脱一酸化炭素金属触媒
  6. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  7. 文具に凝るといふことを化学者もしてみむとてするなり⑰:MacBook Airの巻
  8. 分子内ラジカル環化 Intramolecular Radical Cyclization
  9. 銅中心が動く人工非ヘム金属酵素の簡便な構築に成功
  10. 化学大手4社は増収 4-6月期連結決算

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

電解液中のイオンが電気化学反応の選択性を決定する

第595回のスポットライトリサーチは、物質・材料研究機構(NIMS) 若手国際研究センター(ICYS…

第10回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

【書評】スキルアップ有機化学 しっかり身につく基礎の基礎

東京化学同人より 2024 年 2 月 16 日に刊行された、「スキルアップ有機…

“逆転の発想”で世界最高のプロトン伝導度を示す新物質を発見

第594回のスポットライトリサーチは、東京工業大学 理学院 化学系 八島研究室の齊藤 馨(さいとう …

第17回日本化学連合シンポジウム「防災と化学」

開催趣旨能登半島地震で罹災された方々に、心からお見舞い申し上げます。自然災害、疾病、火災、事…

溶液中での安定性と反応性を両立した金ナノ粒子触媒の開発

第593回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士後期課程3年の夏 …

DeuNet (重水素化ネットワーク)

Deunet とは?重水素化ネットワーク (The Duteration Network, De…

マテリアルズ・インフォマティクスにおける分子生成の応用 ー新しい天然有機化合物の生成を目指すー

開催日 2024/2/21 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

有機合成化学協会誌2024年2月号:タンデムボラFriedel-Crafts反応・炭素-フッ素結合活性化・セリウム錯体・コバルト-炭素結合・ホスホロアミダイト法

有機合成化学協会が発行する有機合成化学協会誌、2024年2月号がオンライン公開されています。…

有機合成にさようなら!“混ぜるだけ”蛍光プローブ3秒間クッキング

第592回のスポットライトリサーチは、香港科技大学(Ben Zhong Tang研)の清川慎介さん(…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP