[スポンサーリンク]

化学者のつぶやき

励起状態複合体でキラルシクロプロパンを合成する

[スポンサーリンク]

触媒-基質複合体が光励起したのち巧みに立体化学を制御するエナンチオ選択的シクロプロパン骨格構築法が開発された。筆者らが開発した本触媒系においてHATが進行する初めての例である。

光触媒を用いた不斉ヘテロDiels-Alder反応

光を利用した不斉触媒反応では光化学過程は立体選択性決定段階に含まれず、ラジカル連鎖反応の開始だけを担うことが多い。このとき発生するラジカルは不斉触媒によって制御され立体選択性が発現する[1]。この機構とは対照的に、触媒サイクルに不斉を誘起する光励起状態が含まれるような例が知られている。

以前筆者らは、2-アシルイミダゾールもしくはN-アシルピラゾール部位をもつ基質と自身らが開発したキラルRh錯体が複合体を形成した後、光励起された複合体が立体化学を制御する不斉付加環化反応を報告している[2,3]。しかし、この触媒-基質複合体の励起状態が立体制御に関わる反応形式はこれまで炭素–炭素結合形成もしくは電子移動に限られていた[4]
一方で、近年Xiaらは(E)-ethyl 3-(2-formylphenyl)acrylateに紫外光を照射すると、分子内水素移動を経てシクロプロパンが生成することを見出した(図1B)[5]。しかし本反応の生成物はラセミ体であり、高圧水銀ランプによる紫外光照射が必要であった。

今回、筆者らはN-アシルピラゾール部位をもつベンズアルデヒド誘導体とキラルRh触媒を利用することで、可視光照射下エナンチオ選択的にシクロプロパンを合成できることを示した(図1C)。

図1. (A) 光触媒を用いた不斉環状付加反応、(B)分子内HATを介した三員環形成反応、 (C)今回の反応

 

Asymmetric Photocatalysis by Intramolecular Hydrogen-Atom Transfer in Photoexcited Catalyst–Substrate Complex
Zhang, C.; Chen, S.; Ye, C.-X.; Harms, K.; Zhang, L.; Houk, K. N.; Meggers, E.Angew. Chem., Int. Ed. 2019, 58, 14462–14466.
DOI:10.1002/anie.201905647

論文著者の紹介

研究者:Eric Meggers

研究者の経歴:
–1995 Diploma in Chemistry, Institute of Organic Chemistry, University of Bonn, Germany
1996–1999 Ph. D, University of Basel, Switzerland (Prof. Bernd Giese)
1999–2002 Postdoc, The Scripps Research Institute, USA (Prof. Peter G. Schultz)
2002–2007 Assistant Professor, University of Pennsylvania, USA
2007– Professor, University of Marburg, Germany
2011–2016 Professor, Xiamen University, P. R. China
研究内容:不斉光触媒の開発、金属錯体の創薬研究、生体直交型反応の触媒開発

研究者:Kendall N. Houk

研究者の経歴:
–1964 B. A., Harvard College
–1968 Ph. D., Harvard University (Prof. Robert B. Woodward)
1968–1980 Louisiana State University (Professor in 1976)
1980–1986 Professor, University of Pittsburgh
1986– Professor, University of California, Los Angeles (Distinguished Professor in 1987)
1988–1990 Director of the Chemistry Division of the National Science Foundation
1991–1994 Chairman of the UCLA Department of Chemistry and Biochemistry.
研究内容:計算化学を用いた人工酵素のデザイン、金属/有機分子/生体酵素触媒の反応機構解明

論文の概要

N-アシルピラゾールを有する種々のベンズアルデヒド(1)に対し、ロジウム光触媒Δ-RhS存在下、青色LEDを照射することで高エナンチオ選択的にシクロプロパン骨格を与えた(図2A)。芳香環にメチル基(2a)や嵩高い置換基(2b)、電子求引基(2c)、電子供与基(2d,e)を有する基質において高エナンチオ選択的に反応は進行した。一方、チオフェンをもつ基質では収率ならびにエナンチオ選択性は中程度にとどまった(2f)。本反応はa,b-不飽和N-アシルピラゾールのb位にメチル基を有する基質にも適用できる(2g)。DFT計算の結果、この反応のエナンチオ選択性は基質と触媒配位子のp–p相互作用、配位子がもつ嵩高いtBu基と基質との立体障害に起因することが示唆された(図2C)。
種々の実験結果から次の反応機構が提唱されている(図2D)。基質がロジウム触媒に配位して複合体(I)を形成したのち、光照射によって励起されビラジカルを生じる()。分子内水素引き抜きによりカルボニルa位に水素が移動した後()、ケテン()を経て分子内不斉ヘテロDiels-Alder反応が進行し目的物を与える。

図2. (A)最適反応条件、(B)基質適用範囲、(C) 遷移状態のDFT計算結果、(D)推定反応機構

 

以上、触媒-基質複合体の光励起から始まるエナンチオ選択的シクロプロパン合成法が開発された。この触媒の新たな反応への応用や、本反応の生成物からより複雑な光学活性シクロプロパンへの誘導化が期待される。

参考文献

  1. Nicewicz, D. A.; MacMillan, D. W. C. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 2008, 322, 77–80. DOI: 1126/science.1161976
  2. Huang, X.; Quinn, T. R.; Harms, K.; Webster, R. D.; Zhang, L.; Wiest, O.; Meggers, E. Direct Visible-light-excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions. J. Am. Chem. Soc. 2017,139, 9120–9123. DOI: 10.1021/jacs.7b04363
  3. Huang, X.; Li, X.; Xie, X.; Harms, K.; Riedel, R.; Meggers, E. Catalytic Asymmetric Synthesis of a Nitrogen Heterocycle through Stereocontrolled Direct Photoreaction from Electronically Excited State. Nat. Commun.2017,8,2245. DOI: 10.1038/s41467-017-02148-1
  4. Huang, X.; Meggers, E.Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.  Acc. Chem. Res.2019, 52, 833–847. DOI: https://doi.org/10.1021/acs.accounts.9b00028
  5. Xia, W.;Shao, Y.;Gui, W.; Yang, C.Efficient Synthesis of Polysubstituted Isochromanones via a Novel Photochemical Rearrangement. Chem. Commun, 2011, 47, 11098–11100. DOI: 10.1039/C1CC14269K
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【詳説】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  2. えれめんトランプをやってみた
  3. 反応化学と生命科学の融合で新たなチャレンジへ【ケムステ×Hey!…
  4. 新風を巻き起こそう!ロレアル-ユネスコ女性科学者日本奨励賞201…
  5. 基礎有機化学討論会開催中
  6. 糖鎖を直接連結し天然物をつくる
  7. Akzonobelとはどんな会社? 
  8. フラーレンの“籠”でH2O2を運ぶ

注目情報

ピックアップ記事

  1. 特許情報から読み解く大手化学メーカーの比較
  2. 機能性ナノマテリアル シクロデキストリンの科学ーChemical Times特集より
  3. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  4. クノール キノリン合成 Knorr Quinoline Synthesis
  5. 【書籍】有機スペクトル解析入門
  6. 薬の副作用2477症例、HP公開始まる
  7. プラスマイナスエーテル!?
  8. 第46回藤原賞、岡本佳男氏と大隅良典氏に
  9. 春季ACSMeetingに行ってきました
  10. 実例で学ぶ化学工学: 課題解決のためのアプローチ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP