[スポンサーリンク]

化学者のつぶやき

励起状態複合体でキラルシクロプロパンを合成する

[スポンサーリンク]

触媒-基質複合体が光励起したのち巧みに立体化学を制御するエナンチオ選択的シクロプロパン骨格構築法が開発された。筆者らが開発した本触媒系においてHATが進行する初めての例である。

光触媒を用いた不斉ヘテロDiels-Alder反応

光を利用した不斉触媒反応では光化学過程は立体選択性決定段階に含まれず、ラジカル連鎖反応の開始だけを担うことが多い。このとき発生するラジカルは不斉触媒によって制御され立体選択性が発現する[1]。この機構とは対照的に、触媒サイクルに不斉を誘起する光励起状態が含まれるような例が知られている。

以前筆者らは、2-アシルイミダゾールもしくはN-アシルピラゾール部位をもつ基質と自身らが開発したキラルRh錯体が複合体を形成した後、光励起された複合体が立体化学を制御する不斉付加環化反応を報告している[2,3]。しかし、この触媒-基質複合体の励起状態が立体制御に関わる反応形式はこれまで炭素–炭素結合形成もしくは電子移動に限られていた[4]
一方で、近年Xiaらは(E)-ethyl 3-(2-formylphenyl)acrylateに紫外光を照射すると、分子内水素移動を経てシクロプロパンが生成することを見出した(図1B)[5]。しかし本反応の生成物はラセミ体であり、高圧水銀ランプによる紫外光照射が必要であった。

今回、筆者らはN-アシルピラゾール部位をもつベンズアルデヒド誘導体とキラルRh触媒を利用することで、可視光照射下エナンチオ選択的にシクロプロパンを合成できることを示した(図1C)。

図1. (A) 光触媒を用いた不斉環状付加反応、(B)分子内HATを介した三員環形成反応、 (C)今回の反応

 

Asymmetric Photocatalysis by Intramolecular Hydrogen-Atom Transfer in Photoexcited Catalyst–Substrate Complex
Zhang, C.; Chen, S.; Ye, C.-X.; Harms, K.; Zhang, L.; Houk, K. N.; Meggers, E.Angew. Chem., Int. Ed. 2019, 58, 14462–14466.
DOI:10.1002/anie.201905647

論文著者の紹介

研究者:Eric Meggers

研究者の経歴:
–1995 Diploma in Chemistry, Institute of Organic Chemistry, University of Bonn, Germany
1996–1999 Ph. D, University of Basel, Switzerland (Prof. Bernd Giese)
1999–2002 Postdoc, The Scripps Research Institute, USA (Prof. Peter G. Schultz)
2002–2007 Assistant Professor, University of Pennsylvania, USA
2007– Professor, University of Marburg, Germany
2011–2016 Professor, Xiamen University, P. R. China
研究内容:不斉光触媒の開発、金属錯体の創薬研究、生体直交型反応の触媒開発

研究者:Kendall N. Houk

研究者の経歴:
–1964 B. A., Harvard College
–1968 Ph. D., Harvard University (Prof. Robert B. Woodward)
1968–1980 Louisiana State University (Professor in 1976)
1980–1986 Professor, University of Pittsburgh
1986– Professor, University of California, Los Angeles (Distinguished Professor in 1987)
1988–1990 Director of the Chemistry Division of the National Science Foundation
1991–1994 Chairman of the UCLA Department of Chemistry and Biochemistry.
研究内容:計算化学を用いた人工酵素のデザイン、金属/有機分子/生体酵素触媒の反応機構解明

論文の概要

N-アシルピラゾールを有する種々のベンズアルデヒド(1)に対し、ロジウム光触媒Δ-RhS存在下、青色LEDを照射することで高エナンチオ選択的にシクロプロパン骨格を与えた(図2A)。芳香環にメチル基(2a)や嵩高い置換基(2b)、電子求引基(2c)、電子供与基(2d,e)を有する基質において高エナンチオ選択的に反応は進行した。一方、チオフェンをもつ基質では収率ならびにエナンチオ選択性は中程度にとどまった(2f)。本反応はa,b-不飽和N-アシルピラゾールのb位にメチル基を有する基質にも適用できる(2g)。DFT計算の結果、この反応のエナンチオ選択性は基質と触媒配位子のp–p相互作用、配位子がもつ嵩高いtBu基と基質との立体障害に起因することが示唆された(図2C)。
種々の実験結果から次の反応機構が提唱されている(図2D)。基質がロジウム触媒に配位して複合体(I)を形成したのち、光照射によって励起されビラジカルを生じる()。分子内水素引き抜きによりカルボニルa位に水素が移動した後()、ケテン()を経て分子内不斉ヘテロDiels-Alder反応が進行し目的物を与える。

図2. (A)最適反応条件、(B)基質適用範囲、(C) 遷移状態のDFT計算結果、(D)推定反応機構

 

以上、触媒-基質複合体の光励起から始まるエナンチオ選択的シクロプロパン合成法が開発された。この触媒の新たな反応への応用や、本反応の生成物からより複雑な光学活性シクロプロパンへの誘導化が期待される。

参考文献

  1. Nicewicz, D. A.; MacMillan, D. W. C. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science, 2008, 322, 77–80. DOI: 1126/science.1161976
  2. Huang, X.; Quinn, T. R.; Harms, K.; Webster, R. D.; Zhang, L.; Wiest, O.; Meggers, E. Direct Visible-light-excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions. J. Am. Chem. Soc. 2017,139, 9120–9123. DOI: 10.1021/jacs.7b04363
  3. Huang, X.; Li, X.; Xie, X.; Harms, K.; Riedel, R.; Meggers, E. Catalytic Asymmetric Synthesis of a Nitrogen Heterocycle through Stereocontrolled Direct Photoreaction from Electronically Excited State. Nat. Commun.2017,8,2245. DOI: 10.1038/s41467-017-02148-1
  4. Huang, X.; Meggers, E.Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.  Acc. Chem. Res.2019, 52, 833–847. DOI: https://doi.org/10.1021/acs.accounts.9b00028
  5. Xia, W.;Shao, Y.;Gui, W.; Yang, C.Efficient Synthesis of Polysubstituted Isochromanones via a Novel Photochemical Rearrangement. Chem. Commun, 2011, 47, 11098–11100. DOI: 10.1039/C1CC14269K

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ケムステVシンポ「最先端有機化学」開催報告(後編)
  2. あなたの分子を特別なカタチに―「CrystalProtein.c…
  3. カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路
  4. 抗体結合ペプチドを用いる非共有結合的抗体-薬物複合体の創製
  5. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場
  6. ボリル化剤を無駄なく使えるsp3C–H結合ボリル化
  7. ゾウががんになりにくい本当の理由
  8. Reaxys体験レポート反応検索編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第153回―「ネットワーク無機材料の結晶学」Micheal O’Keeffe教授
  2. 2012年10大化学ニュース【前編】
  3. エナンチオ選択的Heck反応で三級アルキルフルオリドを合成する
  4. DAST類縁体
  5. 人が集まるポスター発表を考える
  6. ボリルアジドを用いる直接的アミノ化
  7. ご注文は海外大学院ですか?〜準備編〜
  8. 東大、京大入試の化学を調べてみた(有機編)
  9. マラリア治療の新薬の登場を歓迎する
  10. おまえら英語よりもタイピングやろうぜ ~中級編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP