[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」③(解答編)

[スポンサーリンク]

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第3回は白濱晴久らによる(-)-Grayanotoxin IIIの全合成を取り上げました(問題はこちら)。今回はその解答編になります。

“Total Synthesis of (+)-Grayanotoxin III”
Kan, T.; Hosokawa, S.; Nara, S.; Oikawa, M.; Ito, S.; Matsuda, F.; Shirahama, H.
J. Org. Chem. 1994, 59, 5532. doi:10.1021/jo00098a009

解答例

題材となっているのは、全合成達成を目前にして、最後の最後で保護基が外れなかった!という苦しい状況に陥った実例の一つです。おそらく全合成化学者の方々は、身に覚えの1つや2つあるのではないでしょうか。ここまで完成品に近い基質で”脱保護プロブレム”が起きてしまうと、かなり苦しみ悩む状況となることは想像に難く有りません(合掌)。

MOM基は酸性条件にて除去できる保護基ですが、オキソニウムカチオンへ水などが求核攻撃するという機構で除去されます。しかし近傍の適当な位置にアルコールが存在していると分子内環化が先行してしまい、強固なメチレンアセタールを作って脱保護が困難になることがあります。この基質はばっちりその条件に当てはまってしまい、また混み合った位置でもあったため、脱保護が上手く行かなかったのです。

next_move_3a_1

なんとかしてオキソニウム非経由の脱保護条件が必要だ!さもないと逆戻りして作り直し・やり直しになってしまう・・・これはなんとしても避けたい・・・!!

ここで光るのが、逆境を打ち破る創造的発想です。

問題文の条件に「骨格が酸化条件に強い」とあります。このヒントから、おそらく酸化条件を経由し、MOM基を脱保護しやすい形に変えているであろうことが推測できます。また2工程の前段階で、余ったヒドロキシル基のアセチル(Ac)保護を行なっています。強めの酸化条件に対し、ヒドロキシル基を安定化させる工夫とみて良いでしょう。

2工程を経た後に、アセチル基も脱保護されています。つまりこのうちのどちらかに、Ac基が脱保護されるような条件が含まれていると考えられます。問題文中に「酸を使わない」とありますので、典型条件は大別して2通り、ヒドリド還元もしくは塩基性加溶媒分解のどちらかです。このうち、問題文の前提条件にマッチしそうなのは、後者でしょう。酸化した直後に還元という組み合わせは、プロダクティブな結果となりにくいからです。

つまりこの2工程で、①MOM基を酸化→②Ac基と同時にMOM酸化物を塩基性で脱保護 というプロセスを経由しているのだと想定されます。ここまで来ればあと少し。

MOM基の酸化・・・あまり見ない変換ですが、実は不可能ではありません。アセタール化合物は、メチレン基の酸化をある程度受けやすくなっている特性があります(もちろん相応の条件が必要ではあります)。

ここで実用されているのは、穏和に行える四酸化ルテニウム酸化です。これにより、MOMをメチルカーボネートへと変換し、塩基性加溶媒分解での脱保護を可能としているのです。もちろんそのような条件ではアセチルも同時に脱保護されてくれます。大変スマートですね。

next_move_3a_2

果たして以下の変換を経ることで、Grayanotoxinの全合成が達成されています。お見事!

next_move_3a_3

今回の問題は現場の苦悩の一端を味わえる題材でしたが、いかがでしたか?皆さんはDead Endを回避できたでしょうか?

 

関連書籍

 

関連リンク

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. カルボン酸に気をつけろ! グルクロン酸抱合の驚異
  2. 第54回天然有機化合物討論会
  3. 光学迷彩をまとう海洋生物―その仕組みに迫る
  4. スローン賞って知っていますか?
  5. ケムステイブニングミキサー2017ー報告
  6. 二重可変領域を修飾先とする均質抗体―薬物複合体製造法
  7. 第一手はこれだ!:古典的反応から最新反応まで3 |第8回「有機合…
  8. 抗ガン天然物インゲノールの超短工程全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. デヴィッド・クレネマン David Klenerman
  2. 研究者の活躍の場は「研究職」だけなのだろうか?
  3. シクロペンタジエニル錯体の合成に一筋の光か?
  4. Wiiで育てる科学の心
  5. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)
  6. “関節技”でグリコシル化を極める!
  7. 第14回ケムステVシンポ「スーパー超分子ワールド」を開催します!
  8. 第40回「分子エレクトロニクスの新たなプラットフォームを目指して」Paul Low教授
  9. なぜあなたは論文が書けないのか
  10. 第44回―「N-ヘテロ環状カルベン錯体を用いる均一系触媒開発」Steve Nolan教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年2月
 12345
6789101112
13141516171819
20212223242526
272829  

注目情報

注目情報

最新記事

メカノケミカル有機合成反応に特化した触媒の開発

第 497回のスポットライトリサーチは、北海道大学総合化学院 有機元素化学研究室…

ポンコツ博士の海外奮闘録XVII~博士,おうちを去る~

ポンコツシリーズ国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1話・…

研究内容を「ダンス」で表現するコンテスト Dance Your Ph.D.

アメリカ科学振興協会(AAAS)と科学誌Scienceが開催する論文ダンスコンテスト「Dance…

ゲノムDNA中の各種修飾塩基を測定する発光タンパク質構築法を開発

第496回のスポットライトリサーチは、東京工科大学大学院バイオ・情報メディア研究科 バイオニクス専攻…

SDGsと化学: 元素循環からのアプローチ

概要 元素循環化学は、SDGs の達成に寄与するものとして近年関心が増している。本書では、元…

【技術者・事業担当者向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 〜ケミカルリサイクル、焼成、乾燥、金属製錬など〜

<内容>脱炭素化と省エネに貢献するモノづくり技術の一つとして、昨今注目を集めているマイクロ波。当…

分子糊 モレキュラーグルー (Molecular Glue)

分子糊 (ぶんしのり、Molecular Glue) とは、2個以上のタンパク質…

原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新反応

第495回のスポットライトリサーチは、大阪大学大学院工学研究科 応用化学専攻 鳶巣研究室の仲保 文太…

【書評】現場で役に立つ!臨床医薬品化学

「現場で役に立つ!臨床医薬品化学」は、2021年3月に化学同人より発行された、医…

環状ペプチドの効率的な化学-酵素ハイブリッド合成法の開発

第494回のスポットライトリサーチは、北海道大学大学院生命科学院 天然物化学研究室(脇本研究室) 博…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP