[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」③(解答編)

[スポンサーリンク]

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第3回は白濱晴久らによる(-)-Grayanotoxin IIIの全合成を取り上げました(問題はこちら)。今回はその解答編になります。

“Total Synthesis of (+)-Grayanotoxin III”
Kan, T.; Hosokawa, S.; Nara, S.; Oikawa, M.; Ito, S.; Matsuda, F.; Shirahama, H.
J. Org. Chem. 1994, 59, 5532. doi:10.1021/jo00098a009

解答例

題材となっているのは、全合成達成を目前にして、最後の最後で保護基が外れなかった!という苦しい状況に陥った実例の一つです。おそらく全合成化学者の方々は、身に覚えの1つや2つあるのではないでしょうか。ここまで完成品に近い基質で”脱保護プロブレム”が起きてしまうと、かなり苦しみ悩む状況となることは想像に難く有りません(合掌)。

MOM基は酸性条件にて除去できる保護基ですが、オキソニウムカチオンへ水などが求核攻撃するという機構で除去されます。しかし近傍の適当な位置にアルコールが存在していると分子内環化が先行してしまい、強固なメチレンアセタールを作って脱保護が困難になることがあります。この基質はばっちりその条件に当てはまってしまい、また混み合った位置でもあったため、脱保護が上手く行かなかったのです。

next_move_3a_1

なんとかしてオキソニウム非経由の脱保護条件が必要だ!さもないと逆戻りして作り直し・やり直しになってしまう・・・これはなんとしても避けたい・・・!!

ここで光るのが、逆境を打ち破る創造的発想です。

問題文の条件に「骨格が酸化条件に強い」とあります。このヒントから、おそらく酸化条件を経由し、MOM基を脱保護しやすい形に変えているであろうことが推測できます。また2工程の前段階で、余ったヒドロキシル基のアセチル(Ac)保護を行なっています。強めの酸化条件に対し、ヒドロキシル基を安定化させる工夫とみて良いでしょう。

2工程を経た後に、アセチル基も脱保護されています。つまりこのうちのどちらかに、Ac基が脱保護されるような条件が含まれていると考えられます。問題文中に「酸を使わない」とありますので、典型条件は大別して2通り、ヒドリド還元もしくは塩基性加溶媒分解のどちらかです。このうち、問題文の前提条件にマッチしそうなのは、後者でしょう。酸化した直後に還元という組み合わせは、プロダクティブな結果となりにくいからです。

つまりこの2工程で、①MOM基を酸化→②Ac基と同時にMOM酸化物を塩基性で脱保護 というプロセスを経由しているのだと想定されます。ここまで来ればあと少し。

MOM基の酸化・・・あまり見ない変換ですが、実は不可能ではありません。アセタール化合物は、メチレン基の酸化をある程度受けやすくなっている特性があります(もちろん相応の条件が必要ではあります)。

ここで実用されているのは、穏和に行える四酸化ルテニウム酸化です。これにより、MOMをメチルカーボネートへと変換し、塩基性加溶媒分解での脱保護を可能としているのです。もちろんそのような条件ではアセチルも同時に脱保護されてくれます。大変スマートですね。

next_move_3a_2

果たして以下の変換を経ることで、Grayanotoxinの全合成が達成されています。お見事!

next_move_3a_3

今回の問題は現場の苦悩の一端を味わえる題材でしたが、いかがでしたか?皆さんはDead Endを回避できたでしょうか?

 

関連書籍

 

関連リンク

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第18回次世代を担う有機化学シンポジウム
  2. 科学ボランティアは縁の下の力持ち
  3. 外国人研究者あるある
  4. ビタミンB12を触媒に用いた脱ハロゲン化反応
  5. 研究生活の心構えー修士課程、博士課程に進学したあなたへー
  6. 配位子だけじゃない!触媒になるホスフィン
  7. 超一流化学者の真剣勝負が生み出した丸かぶり論文
  8. 燃える化学の動画を集めてみました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. リード指向型合成 / Lead-Oriented Synthesis
  2. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チューリヒ校・Bode研より
  3. 単一細胞レベルで集団を解析
  4. ネイティブスピーカーも納得する技術英語表現
  5. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  6. 研究室の大掃除マニュアル
  7. マーヴィン・カルザース Marvin H. Caruthers
  8. NCL用ペプチド合成を簡便化する「MEGAリンカー法」
  9. シトクロムP450 BM3
  10. アセタール還元によるエーテル合成 Ether Synthesis by Reduction of Acetal

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年2月
« 1月   3月 »
 12345
6789101112
13141516171819
20212223242526
272829  

注目情報

注目情報

最新記事

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP