[スポンサーリンク]

化学者のつぶやき

Dead Endを回避せよ!「全合成・極限からの一手」③(解答編)

[スポンサーリンク]

このコーナーでは、直面した困難を克服するべく編み出された、全合成における優れた問題解決とその発想をクイズ形式で紹介してみたいと思います。

第3回は白濱晴久らによる(-)-Grayanotoxin IIIの全合成を取り上げました(問題はこちら)。今回はその解答編になります。

“Total Synthesis of (+)-Grayanotoxin III”
Kan, T.; Hosokawa, S.; Nara, S.; Oikawa, M.; Ito, S.; Matsuda, F.; Shirahama, H.
J. Org. Chem. 1994, 59, 5532. doi:10.1021/jo00098a009

解答例

題材となっているのは、全合成達成を目前にして、最後の最後で保護基が外れなかった!という苦しい状況に陥った実例の一つです。おそらく全合成化学者の方々は、身に覚えの1つや2つあるのではないでしょうか。ここまで完成品に近い基質で”脱保護プロブレム”が起きてしまうと、かなり苦しみ悩む状況となることは想像に難く有りません(合掌)。

MOM基は酸性条件にて除去できる保護基ですが、オキソニウムカチオンへ水などが求核攻撃するという機構で除去されます。しかし近傍の適当な位置にアルコールが存在していると分子内環化が先行してしまい、強固なメチレンアセタールを作って脱保護が困難になることがあります。この基質はばっちりその条件に当てはまってしまい、また混み合った位置でもあったため、脱保護が上手く行かなかったのです。

next_move_3a_1

なんとかしてオキソニウム非経由の脱保護条件が必要だ!さもないと逆戻りして作り直し・やり直しになってしまう・・・これはなんとしても避けたい・・・!!

ここで光るのが、逆境を打ち破る創造的発想です。

問題文の条件に「骨格が酸化条件に強い」とあります。このヒントから、おそらく酸化条件を経由し、MOM基を脱保護しやすい形に変えているであろうことが推測できます。また2工程の前段階で、余ったヒドロキシル基のアセチル(Ac)保護を行なっています。強めの酸化条件に対し、ヒドロキシル基を安定化させる工夫とみて良いでしょう。

2工程を経た後に、アセチル基も脱保護されています。つまりこのうちのどちらかに、Ac基が脱保護されるような条件が含まれていると考えられます。問題文中に「酸を使わない」とありますので、典型条件は大別して2通り、ヒドリド還元もしくは塩基性加溶媒分解のどちらかです。このうち、問題文の前提条件にマッチしそうなのは、後者でしょう。酸化した直後に還元という組み合わせは、プロダクティブな結果となりにくいからです。

つまりこの2工程で、①MOM基を酸化→②Ac基と同時にMOM酸化物を塩基性で脱保護 というプロセスを経由しているのだと想定されます。ここまで来ればあと少し。

MOM基の酸化・・・あまり見ない変換ですが、実は不可能ではありません。アセタール化合物は、メチレン基の酸化をある程度受けやすくなっている特性があります(もちろん相応の条件が必要ではあります)。

ここで実用されているのは、穏和に行える四酸化ルテニウム酸化です。これにより、MOMをメチルカーボネートへと変換し、塩基性加溶媒分解での脱保護を可能としているのです。もちろんそのような条件ではアセチルも同時に脱保護されてくれます。大変スマートですね。

next_move_3a_2

果たして以下の変換を経ることで、Grayanotoxinの全合成が達成されています。お見事!

next_move_3a_3

今回の問題は現場の苦悩の一端を味わえる題材でしたが、いかがでしたか?皆さんはDead Endを回避できたでしょうか?

 

関連書籍

 

関連リンク

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 今年は国際周期表年!
  2. 異分野交流のすゝめ
  3. 博士課程学生の奨学金情報
  4. ノルゾアンタミンの全合成
  5. 「優れた研究テーマ」はどう選ぶべき?
  6. (+)-11,11′-Dideoxyverticil…
  7. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観…
  8. ケムステイブニングミキサー2017へ参加しよう!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 喜多氏新作小説!『美少女教授・桐島統子の事件研究録』
  2. フラーレンの“籠”でH2O2を運ぶ
  3. 中皮腫治療薬を優先審査へ
  4. アルゴン (argon; Ar)
  5. 非リボソームペプチド Non-Ribosomal Peptide
  6. 乙種危険物取扱者・合格体験記~Webmaster編
  7. 日本科学未来館
  8. 【書籍】理系のための口頭発表術
  9. マンダー試薬 Mander’s Reagent
  10. 2012年分子生物学会/生化学会 ケムステキャンペーン

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学のためのPythonによるデータ解析・機械学習入門

hodaです。今回は筆者の勉強用に読んだ機械学習関連の書籍を紹介します。概要本書は、…

アカデミックから民間企業へ転職について考えてみる 第三回

カデミックから民間企業へ転職した場合、入社後にギャップを感じる人が少なからずいます。もちろん、どんな…

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

Chem-Station Twitter

PAGE TOP