[スポンサーリンク]

ケムステニュース

超合金粉末の製造方法の改善に機械学習が試行される

[スポンサーリンク]

NIMS は、機械学習を適用することで、航空機エンジン用材料として有望な Ni-Co 基超合金の高性能・高品質な粉末を、高い収率で生産可能な条件を高速探索することに成功しました。本技術を活用することで、大型装置を用いる実際の粉末製造現場において、粉末単価、試行回数・時間の大幅な軽減が可能となり、高性能・高品質・低コストな超合金粉末のいち早い製品化が期待できます。 (引用:NIMSプレスリリース11月30日)

この研究は機械学習によって高性能・高品質な合金粉末を開発したという内容ですが、金属粉末が航空機エンジン向けの材料としてなぜ役に立つのか疑問に思うかもしれません。従来の航空機エンジン部品の製造においては金属の塊を削ったり(切削)、高温にした金属を型にはめて(鋳鍛造)部品を製造しているため、金属粉末は使われていませんでした。

しかし航空機エンジンメーカーは、下記のような利点がある3Dプリンターを使った部品の製造を積極的に推進していて、すでに3Dプリンターで製造した部品を使って製造されたエンジンを搭載した航空機が世界の空を飛び始めています。

  • より複雑な部品製造に対応:従来は複数の部品を溶接して複雑な部品を製造していますが、3Dプリンターを使うことで一つの部品として製造することができ構成部品の納期や品質の管理の手間を減らすことができます。また、性能的にも耐久性は向上しつつ重量を軽くすることができます。GE aviationによれば、3Dプリンターで製造した燃料ノズルは、耐久性が5倍以上になるほか、重量が25%軽くなり、航空機の燃料費を1機当たり年間160万ドル(1億6000万円強)削減できるとしています。
  • 迅速な造形:航空宇宙業界の部品は多種多様ですが少量しか必要ないため、メーカーはたくさんの部品の在庫を保有しています。鋳鍛造では部品ごとに型が必要ですし、切削の金属加工においても、製造する部品によって金属片や削りだす刃先などが異なるため、経済性を考えてある程度の数を一度に製造していると予想されます。一方で3Dプリンターを使えば、機械の部品を変更することなく、同じ原料から様々な部品を一個ずつ作ることができます。究極的には部品ストックを持たず、交換が必要な部品を整備工場の3Dプリンターで製造できるようになるかもしれません。

3Dプリンターの種類は様々ですが、金属部品向けのプリンターの場合、金属粉末が敷かれた台座にレーザーや電子ビームを照射し金属粉末を希望の場所のみ焼結させ、それを積層させることで部品を製造する方法がよく使われています。そのため部品のパフォーマンスと製造コストは粉末に左右されるため、本研究のように低コストで高品質の金属粉末の製造方法の開発が重要なカギとなります。

では本研究の内容に移りますが、航空機のエンジンで使われるタービンディスクは、近年の燃費を向上させるためにより高温で稼働することが求められています。材料の観点からの耐用温度を高めるためには様々な合金元素を添加する必要がありますが、従来の鋳鍛造では分離が起きてしまい元素の添加には制限があります。そのため金属粉末を使ったタービンディスクの製造が有用であると考えられますが、使われる金属粉末には下記のような品質が求められていて、特に53 μm以上の粒子を使うと耐久性が落ちるため、現在はふるいにかけて粒子を選別していますが、収率が10から30%になってしまいます。

  • :53 μm以下の粒子サイズ
  • 低含有酸素濃度
  • 高真円度
  • 低ミクロ偏析

粒子の製造はガスアトマイズプロセスという溶融させた金属を滴下させる際に不活性ガスを吹き付けて粒子にする方法で行われていますが、パラメーターが多く、条件の最適化にはコストと時間がかかります。

そこで本研究では、機械学習の助けを借りて最小限の実験やシミュレーションで、目的の特性を備えた新しい材料を開発する手法について検討を行いました。

実験は、合成実験、粒子評価、データ整理、分析のサイクルを何回か行うことで、小さい粒径の収率を向上させることを試みました。

実験のサイクル(引用:原著論文

まず合成実験は下の図のような装置を使って行われました。

装置図:装置上部(3)で金属が溶融されて滴下される、その際に9から供給されたアルゴンガスが吹き込まれて金属粉末となる。11で粉末が回収される。(引用:原著論文

ガスアトマイズプロセスによって合成させる粉末粒子の直径の中央値は、下記の式に従うことが知られています。

粒子直径の中央値(d50)を示す式:D=ノズルの内径 K=定数 vl=溶融金属の粘度 vg=ガスの粘度 Ml=溶融金属の流量 Mg=ガスの流量 We = ρlDVg2lでρl=溶融金属の密度 σl=溶融金属の表面張力 Vg=ガスの速度

一見すると、多くのパラメーターが粒子の直径に関連していると見えますが、vlρlσl, Ml溶融温度に依存していてvgMg, Vg は、ガス圧力に依存しているため、本研究ではこの二つのパラメーターのみを変えて実験を行いました。 粒径ごとの収率の計算は、ふるいを使って分離し重量を計測しました。また粒子の特性の評価にはSEMを利用し、38μm以下の粒子のサイズ分析にはダイナミック粒子画像解析システムを使用しました。使用した機械学習の手法ですが、ベイズ最適化という手法が使われました。ベイズ最適化は、ロボットが合成から評価まで自動で行った研究の中でも使われたもので、相関がわからない中、最適解を調べるときに使われる手法です。そして収率の予測モデルは、ガウス過程回帰が使われました。筆者らは、これらの機械学習の作業を一から行うのではなく、東京大学大学院新領域創成科学研究科メディカル情報生命専攻津田研究室で開発されたCOMBOパッケージを使って解析が行われました。

まず、初期データを3つ入力しベイズ最適化を3サイクル行ったところ、すべての探索条件で収率が70%を超えることが分かりました。

実験条件ごとの粒子径の収率の違いと製造コストの比較 A:実験と同じ元素の市販品の収率と予測コスト B:異なる元素の市販品の収率と予測コスト(引用:原著論文

得られた粉末を詳しく調べるために、SEM画像を取得しました。すると38μmのふるいを通過した粒子の中には20μm以下の小さな粒子が含まれていて、また38〜53μmの粉末には、高い真円度の粒子が多いことが分かりました。一方で、53μmを超える粒子は、真円度も低く板状の粒子も含まれていていることが分かりました。この原因について急速な凝固によるひずみが関連していると論文中ではコメントされています。

3回目のベイズ最適化の条件で合成された粒子のSEM画像(引用:原著論文

さらに、粒径ごとの品質を詳しく調べるために、画像分析を行いました。すると粒径が大きくなるほど、粒子表面の樹枝状の構造が大きくなり、真円度も低下していることが確認され、粒径が小さくなるほど、冷却速度が向上しより高い真円度や均一性を持ち、少ない粒子表面の樹枝状の構造になることが確認されました。

(a)実験条件ごとの粒径の違い (b)粒径と粒子表面の樹枝状の構造の関係 (c)粒径と真円度の関係(引用:原著論文

最後に得られたデータを使って粉末粒子の直径の中央値を予測するモデルを構築したところ、上記の実験式から得られる傾向と同じ傾向が示されました。通常は、様々な条件で実験を行い経験的な式を導出しますが、このような機械学習を使えば、溶融金属密度や表面張力の温度依存性といった測定が難しいパラメーターなしで、かつ少ない実験数で経験式を導出することと同じように収率の挙動に関する知識を得ることができるとコメントしています。さらに今回の実験では金属溶融温度とガス圧力のみを変えて実験を行いましたが、さらなる最適化には他のパラメーターの影響も同様の手法で探索されるべきと主張されています。

粒径の中央値と温度、圧力の関係(引用:原著論文

現在、化学品の開発にはスピードと効率が求められていて、特に高額であったり時間がかかる実験を効率的に進める方法について研究が進んでいます。今後は、化学の研究全体で機械学習の活用がより進むと予想されるため、化学者も最低限のデータサイエンスに関することを勉強しておく必要があるようです。

関連書籍

関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 化学物質の環境リスクを学べる「かんたん化学物質ガイド」開設
  2. 海藻成長の誘導物質発見 バイオ研
  3. 2009年10大化学ニュース【Part2】
  4. 2016年化学10大ニュース
  5. 富山化の認知症薬が米でフェーズ1入り
  6. 2009年10大化学ニュース
  7. 未来の病気診断はケータイで!?
  8. ダイキン、特許を無償開放 代替フロンのエアコン冷媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. A-ファクター A-factor
  2. 偏光依存赤外分光でMOF薄膜の配向を明らかに! ~X線を使わない結晶配向解析
  3. 第九回 タンパク質に新たな付加価値を-Tom Muir教授
  4. 細菌を取り巻く生体ポリマーの意外な化学修飾
  5. ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮
  6. 一流科学者たちの経済的出自とその考察
  7. バイオ触媒によるトリフルオロメチルシクロプロパンの不斉合成
  8. 世界を股にかける「国際学会/交流会 体験記」
  9. 第126回―「分子アセンブリによって複雑化合物へとアプローチする」Zachary Aron博士
  10. 首席随員に野依良治氏 5月の両陛下欧州訪問

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
« 12月   2月 »
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

腎細胞がん治療の新薬ベルツチファン製造プロセスの開発

2021年夏に米国 FDA はベルツチファン (belzutifan, WeliregTM) という…

マテリアルズ・インフォマティクスの基本とMI推進

見逃し配信視聴申込はこちら■概要2021年9月7日に開催されたウェブセミナー「マテリアル…

【四国化成工業】新卒採用情報(2023卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

四国化成工業ってどんな会社?

私たち四国化成工業株式会社は、企業理念「独創力」のもと「有機合成技術」を武器に「これまでになかった材…

ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜

ポンコツシリーズ番外編 その2 J-1 VISA取得までの余談と最近日本で問題になった事件を経験した…

結合をアリーヴェデルチ! Agarozizanol Bの全合成

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反…

有機合成化学協会誌2022年1月号:無保護ケチミン・高周期典型金属・フラビン触媒・機能性ペプチド・人工核酸・脂質様材料

有機合成化学協会が発行する有機合成化学協会誌、2022年1月号がオンライン公開されました。本…

第167回―「バイオ原料の活用を目指した重合法の開発」John Spevacek博士

第167回の海外化学者インタビューは、ジョン・スペヴァセック博士です。Aspen Research社…

繊維強化プラスチックの耐衝撃性を凌ぐゴム材料を開発

名古屋大学大学院工学研究科有機・高分子化学専攻の 野呂 篤史講師らの研究グループは、日本ゼオンと共同…

反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】

2021年度科学研究費助成事業 学術変革領域研究(B)に採択された『糖鎖ケミカルノックインが拓く膜動…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP