[スポンサーリンク]

化学者のつぶやき

エナンチオ選択的α-アルキル-γ-ラクタム合成

[スポンサーリンク]

ニッケル触媒反応によるエナンチオ選択的a-アルキルg-ラクタム合成法が開発された。新奇配位子Quinimを用いることで高いエナンチオ選択性で種々のαアルキルラクタムを与える。

α-アルキルピロリドンの不斉合成

γ-ラクタムは、天然物や医薬分子に頻出する骨格である[1]。その中でもキラルなα-アルキルピロリドン構造をもつ化合物は優れた生物活性を示すため、不斉合成法が種々報告されている [2]

先駆的な例として、1998年に古賀らは化学量論量のキラル塩基を用いたピロリドンのエナンチオ選択的α-アルキル化を報告した。しかし、副反応として過アルキル化やエピメリ化が進行する(図1A)[3]。現在頻用されているのは、多段階反応であるものの、Evans不斉補助基を用いたアルキル化により不斉中心を導入し、α-アルキルピロリドン構造へ誘導する方法である(図1B)[4]

一方、近年では不斉触媒を用いた手法がいくつか知られている。例えば、ZhangおよびDingらはエナミドの不斉水素化によるa-ベンジルピロリドンの不斉合成を報告した。また、Cramerらはアルケンのエナンチオ選択的な分子内ヒドロカルバモイル化によってa-メチルピロリドンの不斉合成を達成した(図1C,D)[5][6]。しかし、いずれの手法もアルキル部位に関して基質適用範囲が限定的であった[7]

今回、華東理工大学のQuとChenらは、ニッケル触媒を用いたアルケンをもつ塩化カルバモイルの分子内環化、続くヨウ化アルキルとの還元的クロスカップリング反応を開発した(図1E)。本反応は、独自に開発した不斉二座配位子Quinimを用いるとエナンチオ選択性が向上し、キラルなa-アルキルピロリドンを効率よく合成できる。

図1. (A) 古賀らの合成法 (B) Evans不斉補助基を用いる合成法 (C) Zhang、Dingらの合成法 (D) Cramerらの合成法 (E) 今回の合成法

 

Quinim: A New Ligand Scaffold Enables Nickel-Catalyzed Enantioselective Synthesis of a-Alkylated g-Lactam

Wu, X.; Qu, J.; Chen, Y. J. Am. Chem. Soc. 2020, 142, 15654–15660.

DOI: 10.1021/jacs.0c07126

論文著者の紹介

研究者:Jingping Qu


研究者の経歴:

–1983 B.S., Dalian University of Technology, China
1986–1988 M.S., Dalian University of Technology, China
1989–1991 Researcher, Showa Denko K. K., Japan
1991–1993 Lecturer, School of Chemical Engineering, Dalian University of Technology, China
1993–1996 Ph.D., The University of Tokyo, Japan (Prof. Masanobu Hidai)
1996–1997 Postdoc, The University of Tokyo, Japan (Prof. Masanobu Hidai)
1997–2003 Senior Researcher, Mitsubishi Chemical Corporation, Japan
2003–2004 Project Manager, Mitsubishi Chemical Corporation, Japan
2004–2011 Professor, School of Chemical Engineering, Dalian University of Technology, China
2011–2015 Vice President, Dalian University of Technology, China
2015– President, East China University of Science and Technology

研究内容:有機金属化学、生物無機化学

研究者:Yifeng Chen


研究者の経歴:

–2007 B.S., Soochow University, China (Prof. Jianping Zou)
2007–2012 Ph.D., Shanghai Institute of Organic Chemistry, China (Prof. Yuanhong Liu)
2012–2013 Research Associate, Shanghai Institute of Organic Chemistry, China (Prof. Yuanhong Liu)
2013–2014 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2014–2017 Postdoc, Yale University, USA (Prof. Timothy R. Newhouse)
2017– Professor, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China

研究内容:遷移金属触媒を用いた反応開発

論文の概要

著者らは、Ni(ClO4)2·6H2O触媒存在下、NMP溶媒中塩化カルバモイル1aに対しヨウ化ヘプタン(2a)およびマンガン、臭化リチウムを添加し、反応条件を検討した(図2A)。配位子は8-Quinox(L1)を用いたところ、中程度の収率でα-アルキル-γ-ラクタム3aを与えた。一方で、L1t-ブチル基をi-プロピル基にしたL2を用いると収率およびエナンチオ選択性が低下した。また、ピリジンとオキサゾリンがジメチルメチレンで架橋されたL3では反応が進行しなかった。これより、オキサゾリン部位のt-ブチル基およびキノリン部位が本反応では重要であることがわかった。L1のオキサゾリン部位をN-フェニルイミダゾリンに変更したQuinim(L4)を用いたところ、高エナンチオ選択的に3aが得られた。なお、L4のフェニル基C4位に電子供与基をもつL5や電子求引基をもつL6では収率およびエナンチオ選択性が向上しなかったことから、L4を最適配位子とした。さらなる検討の結果、触媒をNi(cod)2、溶媒をDMFにすることで、高収率かつ高エナンチオ選択的に3aを得た。

次に、基質適用範囲を調査した。本反応は2aの他に、ハロゲンや保護アルコール、エステル、ボロン酸エステルをもつヨウ化アルキルに適用可能である(3b3e; 図2B)。塩化カルバモイルの窒素上の置換基はベンジル基に限らず、種々のアリール基でも反応は進行する(3f3i)。また、本反応はアリール基をもたないエステルにも適用可能だった(3j)。

機構解明研究より、本反応のエナンチオ選択性はカルバモイルニッケル中間体が分子内のアルケンに挿入する段階で発現することがわかった。これより、著者らは本反応の推定反応機構を提唱した(図2C)。まず、1のC–Cl結合がニッケル触媒に酸化的付加し、カルバモイルニッケル中間体IM1を形成した後、分子内アルケンの挿入反応でIM2が生成する。マンガンによって還元されIM3となり、酸化されたIM42がSETで反応することで、IM5となる。続く還元的脱離により、3が得られる。

図2. (A) 条件検討 (B) 基質適用範囲 (C) 推定反応機構

 

以上、エナンチオ選択的α-アルキル-γ-ラクタムの合成法が開発された。高いエナンチオ選択性および広い基質適用範囲が本反応の魅力であり、全合成などへの応用が期待される。

参考文献

  1. (a) Ye, L.-W.; Shu, C.; Gagosz, F. Recent Progress Towards Transition Metal-Catalyzed Aynthesis of g-Lactams. Org. Biomol. Chem. 2014, 12, 1833–1845. DOI: 10.1039/C3OB42181C (b) Pandey, G.; Mishra, A.; Khamrai, J. Generation of All Carbon Quaternary Stereocenters at the C-3 Carbon of Piperidinones and Pyrrolidinones and Its Application in Natural Product Total Synthesis. Tetrahedron 2018, 74, 4903–4915. DOI: 10.1016/j.tet.2018.05.004
  2. Caruano, J.; Muccioli, G. G.; Robiette, R. Biologically Active g-Lactams: Synthesis and Natural Sources. Org. Biomol. Chem. 2016, 14, 10134–10156. DOI: 10.1039/C6OB01349J
  3. Matsuo, J.; Kobayashi, S.; Koga, K. Enantioselective Alkylation of Lactams and Lactones via Lithium Enolate Formation Using a Chiral Tetradentate Lithium Amide in the Presence of Lithium Bromide. Tetrahedron Lett. 1998, 39, 9723–9726. DOI: 1016/S0040-4039(98)02235-7
  4. a) Dragovich, P. S.; Prins, T. J.; Zhou, R.; Webber, S. E.; Marakovits, J. T.; Fuhrman, S. A.; Patick, A. K.; Matthews, D. A.; Lee, C. A.; Ford, C. E.; Burke, B. J.; Rejto, P. A.; Hendrickson, T. F.; Tuntland, T.; Brown, E. L.; Meador, J. W., III; Ferre, R. A.; Harr, J. E.; Kosa, M. B.; Worland, S. T. S. Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 4. Incorporation of P1 Lactam Moieties as L-Glutamine Replacements. J. Med. Chem. 1999, 42, 1213–1224. DOI: 10.1021/jm9805384 (b) Boy, K. M.; Guernon, J. M.; Shi, J.; Toyn, J. H.; Meredith, J. E.; Barten, D. M.; Burton, C. R.; Albright, C. F.; Marcinkeviciene, J.; Good, A. C.; Tebben, A. J.; Muckelbauer, J. K.; Camac, D. M.; Lentz, K. A.; Bronson, J. J.; Olson, R. E.; Macor, J. E.; Thompson, L. A. Monosubstituted g-Lactam and Conformationally Constrained 1,3-Diaminopropan-2-ol Transition-State Isostere Inhibitors of b-Secretase (BACE). Bioorg. Med. Chem. Lett. 2011, 21, 6916–6924. DOI: 10.1016/j.bmcl.2011.06.109
  5. (a) Liu, X.; Gridnev, I. D.; Zhang, W. Mechanism of the Asymmetric Hydrogenation of Exocyclic a,b-Unsaturated Carbonyl Compounds with an Iridium/BiphPhox Catalyst: NMR and DFT Studies. Agnew. Chem., Int. Ed. 2014, 53, 1901–1905. DOI: 10.1002/anie.201309677 (b) Liu, X.; Han, Z.; Wang, Z.; Ding, K. SpinPhox/Iridium(I)-Catalyzed Asymmetric Hydrogenation of Cyclic a-Alkylidene Carbonyl Compounds. Angew. Chem., Int. Ed.2014, 53, 1978–1982. DOI: 10.1002/anie.201309521
  6. Donets, P. A.; Cramer, N. Diaminophosphine Oxide Ligand Enabled Asymmetric Nickel-Catalyzed Hydrocarbamoylations of Alkenes. J. Am. Chem. Soc. 2013, 135, 11772–11775. DOI: 10.1021/ja406730t
  7. 脱炭酸型不斉a-アリル化によりピロリドンのa位に不斉4級炭素を構築する方法はある。Behenna, D. C.; Liu, Y.; Yurino, T.; Kim, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Enantioselective Construction of Quaternary N-Heterocycles by Palladium-Catalysed Decarboxylative Allylic Alkylation of Lactams. Nat. Chem. 2012, 4, 130–133. DOI: 10.1021/jacs.7b04086
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 …
  2. ケムステ国際版・中国語版始動!
  3. 今こそ天然物化学☆ 天然物化学談話会2021オンライン特別企画
  4. スケールアップのためのインフォマティクス活用 -ラボスケールから…
  5. 「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講し…
  6. ナノ学会 第22回大会 付設展示会ケムステキャンペーン
  7. 死刑囚によるVXガスに関する論文が掲載される
  8. 5配位ケイ素間の結合

注目情報

ピックアップ記事

  1. 分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】
  2. 研究活動の御用達!PDF加工のためのクラウドサービス
  3. 学振申請書を磨き上げるポイント ~自己評価欄 編(後編)~
  4. ビタミンB12 /vitamin B12
  5. 関東化学2019年採用情報
  6. GRE Chemistry
  7. 【10月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:オルガチックスSICシリーズによる 離型性、滑り性、撥水性付与
  8. 最長のヘリセンをつくった
  9. 個性あふれるTOC大集合!
  10. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例〜

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP