[スポンサーリンク]

化学者のつぶやき

エナンチオ選択的α-アルキル-γ-ラクタム合成

[スポンサーリンク]

ニッケル触媒反応によるエナンチオ選択的a-アルキルg-ラクタム合成法が開発された。新奇配位子Quinimを用いることで高いエナンチオ選択性で種々のαアルキルラクタムを与える。

α-アルキルピロリドンの不斉合成

γ-ラクタムは、天然物や医薬分子に頻出する骨格である[1]。その中でもキラルなα-アルキルピロリドン構造をもつ化合物は優れた生物活性を示すため、不斉合成法が種々報告されている [2]

先駆的な例として、1998年に古賀らは化学量論量のキラル塩基を用いたピロリドンのエナンチオ選択的α-アルキル化を報告した。しかし、副反応として過アルキル化やエピメリ化が進行する(図1A)[3]。現在頻用されているのは、多段階反応であるものの、Evans不斉補助基を用いたアルキル化により不斉中心を導入し、α-アルキルピロリドン構造へ誘導する方法である(図1B)[4]

一方、近年では不斉触媒を用いた手法がいくつか知られている。例えば、ZhangおよびDingらはエナミドの不斉水素化によるa-ベンジルピロリドンの不斉合成を報告した。また、Cramerらはアルケンのエナンチオ選択的な分子内ヒドロカルバモイル化によってa-メチルピロリドンの不斉合成を達成した(図1C,D)[5][6]。しかし、いずれの手法もアルキル部位に関して基質適用範囲が限定的であった[7]

今回、華東理工大学のQuとChenらは、ニッケル触媒を用いたアルケンをもつ塩化カルバモイルの分子内環化、続くヨウ化アルキルとの還元的クロスカップリング反応を開発した(図1E)。本反応は、独自に開発した不斉二座配位子Quinimを用いるとエナンチオ選択性が向上し、キラルなa-アルキルピロリドンを効率よく合成できる。

図1. (A) 古賀らの合成法 (B) Evans不斉補助基を用いる合成法 (C) Zhang、Dingらの合成法 (D) Cramerらの合成法 (E) 今回の合成法

 

Quinim: A New Ligand Scaffold Enables Nickel-Catalyzed Enantioselective Synthesis of a-Alkylated g-Lactam

Wu, X.; Qu, J.; Chen, Y. J. Am. Chem. Soc. 2020, 142, 15654–15660.

DOI: 10.1021/jacs.0c07126

論文著者の紹介

研究者:Jingping Qu


研究者の経歴:

–1983 B.S., Dalian University of Technology, China
1986–1988 M.S., Dalian University of Technology, China
1989–1991 Researcher, Showa Denko K. K., Japan
1991–1993 Lecturer, School of Chemical Engineering, Dalian University of Technology, China
1993–1996 Ph.D., The University of Tokyo, Japan (Prof. Masanobu Hidai)
1996–1997 Postdoc, The University of Tokyo, Japan (Prof. Masanobu Hidai)
1997–2003 Senior Researcher, Mitsubishi Chemical Corporation, Japan
2003–2004 Project Manager, Mitsubishi Chemical Corporation, Japan
2004–2011 Professor, School of Chemical Engineering, Dalian University of Technology, China
2011–2015 Vice President, Dalian University of Technology, China
2015– President, East China University of Science and Technology

研究内容:有機金属化学、生物無機化学

研究者:Yifeng Chen


研究者の経歴:

–2007 B.S., Soochow University, China (Prof. Jianping Zou)
2007–2012 Ph.D., Shanghai Institute of Organic Chemistry, China (Prof. Yuanhong Liu)
2012–2013 Research Associate, Shanghai Institute of Organic Chemistry, China (Prof. Yuanhong Liu)
2013–2014 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2014–2017 Postdoc, Yale University, USA (Prof. Timothy R. Newhouse)
2017– Professor, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China

研究内容:遷移金属触媒を用いた反応開発

論文の概要

著者らは、Ni(ClO4)2·6H2O触媒存在下、NMP溶媒中塩化カルバモイル1aに対しヨウ化ヘプタン(2a)およびマンガン、臭化リチウムを添加し、反応条件を検討した(図2A)。配位子は8-Quinox(L1)を用いたところ、中程度の収率でα-アルキル-γ-ラクタム3aを与えた。一方で、L1t-ブチル基をi-プロピル基にしたL2を用いると収率およびエナンチオ選択性が低下した。また、ピリジンとオキサゾリンがジメチルメチレンで架橋されたL3では反応が進行しなかった。これより、オキサゾリン部位のt-ブチル基およびキノリン部位が本反応では重要であることがわかった。L1のオキサゾリン部位をN-フェニルイミダゾリンに変更したQuinim(L4)を用いたところ、高エナンチオ選択的に3aが得られた。なお、L4のフェニル基C4位に電子供与基をもつL5や電子求引基をもつL6では収率およびエナンチオ選択性が向上しなかったことから、L4を最適配位子とした。さらなる検討の結果、触媒をNi(cod)2、溶媒をDMFにすることで、高収率かつ高エナンチオ選択的に3aを得た。

次に、基質適用範囲を調査した。本反応は2aの他に、ハロゲンや保護アルコール、エステル、ボロン酸エステルをもつヨウ化アルキルに適用可能である(3b3e; 図2B)。塩化カルバモイルの窒素上の置換基はベンジル基に限らず、種々のアリール基でも反応は進行する(3f3i)。また、本反応はアリール基をもたないエステルにも適用可能だった(3j)。

機構解明研究より、本反応のエナンチオ選択性はカルバモイルニッケル中間体が分子内のアルケンに挿入する段階で発現することがわかった。これより、著者らは本反応の推定反応機構を提唱した(図2C)。まず、1のC–Cl結合がニッケル触媒に酸化的付加し、カルバモイルニッケル中間体IM1を形成した後、分子内アルケンの挿入反応でIM2が生成する。マンガンによって還元されIM3となり、酸化されたIM42がSETで反応することで、IM5となる。続く還元的脱離により、3が得られる。

図2. (A) 条件検討 (B) 基質適用範囲 (C) 推定反応機構

 

以上、エナンチオ選択的α-アルキル-γ-ラクタムの合成法が開発された。高いエナンチオ選択性および広い基質適用範囲が本反応の魅力であり、全合成などへの応用が期待される。

参考文献

  1. (a) Ye, L.-W.; Shu, C.; Gagosz, F. Recent Progress Towards Transition Metal-Catalyzed Aynthesis of g-Lactams. Org. Biomol. Chem. 2014, 12, 1833–1845. DOI: 10.1039/C3OB42181C (b) Pandey, G.; Mishra, A.; Khamrai, J. Generation of All Carbon Quaternary Stereocenters at the C-3 Carbon of Piperidinones and Pyrrolidinones and Its Application in Natural Product Total Synthesis. Tetrahedron 2018, 74, 4903–4915. DOI: 10.1016/j.tet.2018.05.004
  2. Caruano, J.; Muccioli, G. G.; Robiette, R. Biologically Active g-Lactams: Synthesis and Natural Sources. Org. Biomol. Chem. 2016, 14, 10134–10156. DOI: 10.1039/C6OB01349J
  3. Matsuo, J.; Kobayashi, S.; Koga, K. Enantioselective Alkylation of Lactams and Lactones via Lithium Enolate Formation Using a Chiral Tetradentate Lithium Amide in the Presence of Lithium Bromide. Tetrahedron Lett. 1998, 39, 9723–9726. DOI: 1016/S0040-4039(98)02235-7
  4. a) Dragovich, P. S.; Prins, T. J.; Zhou, R.; Webber, S. E.; Marakovits, J. T.; Fuhrman, S. A.; Patick, A. K.; Matthews, D. A.; Lee, C. A.; Ford, C. E.; Burke, B. J.; Rejto, P. A.; Hendrickson, T. F.; Tuntland, T.; Brown, E. L.; Meador, J. W., III; Ferre, R. A.; Harr, J. E.; Kosa, M. B.; Worland, S. T. S. Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 4. Incorporation of P1 Lactam Moieties as L-Glutamine Replacements. J. Med. Chem. 1999, 42, 1213–1224. DOI: 10.1021/jm9805384 (b) Boy, K. M.; Guernon, J. M.; Shi, J.; Toyn, J. H.; Meredith, J. E.; Barten, D. M.; Burton, C. R.; Albright, C. F.; Marcinkeviciene, J.; Good, A. C.; Tebben, A. J.; Muckelbauer, J. K.; Camac, D. M.; Lentz, K. A.; Bronson, J. J.; Olson, R. E.; Macor, J. E.; Thompson, L. A. Monosubstituted g-Lactam and Conformationally Constrained 1,3-Diaminopropan-2-ol Transition-State Isostere Inhibitors of b-Secretase (BACE). Bioorg. Med. Chem. Lett. 2011, 21, 6916–6924. DOI: 10.1016/j.bmcl.2011.06.109
  5. (a) Liu, X.; Gridnev, I. D.; Zhang, W. Mechanism of the Asymmetric Hydrogenation of Exocyclic a,b-Unsaturated Carbonyl Compounds with an Iridium/BiphPhox Catalyst: NMR and DFT Studies. Agnew. Chem., Int. Ed. 2014, 53, 1901–1905. DOI: 10.1002/anie.201309677 (b) Liu, X.; Han, Z.; Wang, Z.; Ding, K. SpinPhox/Iridium(I)-Catalyzed Asymmetric Hydrogenation of Cyclic a-Alkylidene Carbonyl Compounds. Angew. Chem., Int. Ed.2014, 53, 1978–1982. DOI: 10.1002/anie.201309521
  6. Donets, P. A.; Cramer, N. Diaminophosphine Oxide Ligand Enabled Asymmetric Nickel-Catalyzed Hydrocarbamoylations of Alkenes. J. Am. Chem. Soc. 2013, 135, 11772–11775. DOI: 10.1021/ja406730t
  7. 脱炭酸型不斉a-アリル化によりピロリドンのa位に不斉4級炭素を構築する方法はある。Behenna, D. C.; Liu, Y.; Yurino, T.; Kim, J.; White, D. E.; Virgil, S. C.; Stoltz, B. M. Enantioselective Construction of Quaternary N-Heterocycles by Palladium-Catalysed Decarboxylative Allylic Alkylation of Lactams. Nat. Chem. 2012, 4, 130–133. DOI: 10.1021/jacs.7b04086
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ルテニウム触媒によるC-C結合活性化を介した水素移動付加環化型カ…
  2. 特許取得のための手続き
  3. スポットライトリサーチムービー:動画であなたの研究を紹介します
  4. 日本にあってアメリカにないガラス器具
  5. 実験教育に最適!:鈴木ー宮浦クロスカップリング反応体験キット
  6. 化学者のためのエレクトロニクス講座~フォトレジスト編
  7. ビッグデータが一変させる化学研究の未来像
  8. システインの位置選択的修飾を実現する「π-クランプ法」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 一度に沢山の医薬分子を放出できるプロドラッグ
  2. “関節技”でグリコシル化を極める!
  3. 有機合成の落とし穴
  4. 留学せずに英語をマスターできるかやってみた(4年目)
  5. Hantzschエステル:Hantzch Ester
  6. 世界の化学企業いくつ知っていますか?
  7. 中高生・高専生でも研究が学べる!サイエンスメンタープログラム
  8. 芳香環のハロゲン化 Halogenation of Aromatic Ring
  9. 反応探索にDNAナノテクノロジーが挑む
  10. 可視光で働く新しい光触媒を創出 -常識を覆す複合アニオンの新材料を発見-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
« 10月   12月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

オンライン講演会に参加してみた~学部生の挑戦記録~

hodaです。講演会やシンポジウムのオンライン化によって学部生でもいろいろな講演会にボタンひとつで参…

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される

チョコレートの製造過程でリン脂質分子を添加するという方法を用いれば、複雑なテンパリング(加熱・せん断…

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センタ…

CV測定器を使ってみた

「電気化学」と聞くと、難しい数式が出てきて何やらとっつきづらいというイメージがある人が多いと思います…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP